摘要背景:小脑皮层负责协调运动、适应特殊条件并参与存储记忆。该皮层会经历与年龄相关的病理变化,表现为皮层厚度下降、神经元丢失(特别是浦肯野细胞)、星形胶质细胞肥大和增生以及氧化状态改变。这些变化是导致各种老年病的原因。本研究旨在评估小脑浦肯野细胞和星形胶质细胞的组织学变化,并确定白化大鼠中丙二醛 (MDA) 和谷胱甘肽 (GSH) 与年龄的关系,并找出细胞变化与氧化状态之间的可能相关性。方法:处死两组白化大鼠(3-6个月和22-26个月),切除小脑,分成三部分。第1部分
1 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands e-mail: f.stoppa@astro.ru.nl 2 Center for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia 3 High Energy Physics/IMAPP, Radboud University, PO Box 9010,6500 Gl Nijmegen,荷兰4 Nikhef,科学园,105,1098 XG阿姆斯特丹,荷兰5.荷兰太空研究所,索邦纳兰2,3584 Ca Utrecht,荷兰8荷兰8天文学研究所,库伊文氏库文氏库素,Celestijnenlaan 200d,3001比利时卢芬,比利时9号卢文9 Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa 11 South African Astronomical Observatory, PO Box 9, Observatory, Cape Town 7935, South Africa 12 Dipartimento di Fisica, Universitá di Trieste, 34127 Trieste, Italy 13 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste,34127意大利Trieste,14 Erlangen Astroparpicle Physics中心,Nikolaus-Fiebiger-STR。2,Erlangen 91058,德国
摘要:多种神经和精神疾病,包括多发性硬化症、阿尔茨海默病和精神分裂症,在分子和组织学水平上都表现出明显的髓鞘异常。这些异常与少突胶质细胞功能障碍和髓鞘结构改变密切相关,这可能是导致大脑区域断开以及在这些情况下观察到的典型临床损害的关键因素。星形胶质细胞的数量远远超过中枢神经系统中的神经元,比例为五比一,在神经元和少突胶质细胞的发育、维持和整体健康中起着不可或缺的作用。因此,它们成为无数神经和精神疾病发生和发展的潜在关键因素。此外,针对星形胶质细胞代表了治疗此类疾病的一种有希望的途径。为了更深入地了解星形胶质细胞在髓鞘相关疾病中的功能,必须采用适当的体内模型,以可靠且可重复的方式忠实地重现复杂人类疾病的具体方面。一种这样的模型是铜宗模型,其中少突胶质细胞的代谢功能障碍引发了早期反应,包括小胶质细胞和星形胶质细胞活化,最终导致多灶性脱髓鞘。值得注意的是,在停止铜宗中毒后,会发生自发的内源性髓鞘再生过程。在这篇评论文章中,我们提供了研究铜宗模型中星形胶质细胞的反应和假定功能的研究的历史概述。随后,我们列出了以前发表的著作,这些著作阐明了星形胶质细胞在这种多发性硬化症模型中的生物学和功能的各个方面。一些研究在星形胶质细胞生物学和病理学的背景下进行了更详细的讨论。我们的目标有两个:提供对这一新兴领域的宝贵概述;更重要的是,激励研究人员开展实验研究,阐明这一关键的神经胶质细胞亚群的多方面功能。
沈伟达 1,6,∗ ,唐叶娇 1,2,6 ,杨菁 1,6 ,朱林静 1,6 ,周文 1 ,项丽阳 2 3,4 ,朱峰 1 ,董静银 1 ,谢逸程 5 ,曾令辉 1,∗ 3 4 1 杭州城市学院医学院浙江省神经修复新靶点与药物研究重点实验室,杭州 310015,浙江 6 2 浙江大学药学院毒理药理研究所,卫生部医学神经生物学重点实验室,杭州 310058,浙江 9 3 浙江省神经电子与脑机接口技术重点实验室,杭州 311121,浙江 11 4 南开大学医学院,天津 300071 12 5 浙江大学医学院儿童医院神经内科、国家儿童保健临床研究中心,杭州 310052,中国 15 16 17 6 这些作者对本文贡献相同。18 ∗ 通讯作者:曾令辉 (zenglh@hzcu.edu.cn),沈伟达 19 ( shenwd@hzcu.edu.cn ) 20
摘要:光遗传学已被用于调节星形胶质细胞活性并调节脑损伤后的神经元功能。活化的星形胶质细胞调节血脑屏障功能,从而参与脑修复。然而,光遗传学激活的星形胶质细胞对缺血性中风屏障功能变化的影响和分子机制仍不清楚。在本研究中,成年雄性 GFAP-ChR2-EYFP 转基因 Sprague-Dawley 大鼠在光血栓性中风后 24、36、48 和 60 小时接受光遗传学刺激以激活同侧皮质星形胶质细胞。使用免疫染色、蛋白质印迹、RT-qPCR 和 shRNA 干扰探索活化的星形胶质细胞对屏障完整性的影响及其潜在机制。进行神经行为测试以评估治疗效果。结果表明,光遗传学激活星形胶质细胞后,IgG 漏出、紧密连接蛋白间隙形成和基质金属肽酶 2 表达均减少( p <0.05)。此外,与对照组相比,光刺激星形胶质细胞可保护中风大鼠的神经元免于凋亡并改善神经行为结果( p <0.05)。值得注意的是,大鼠缺血性中风后光遗传学激活的星形胶质细胞中白细胞介素 10 的表达显著增加。抑制星形胶质细胞中的白细胞介素 10 会削弱光遗传学激活的星形胶质细胞的保护作用( p <0.05)。我们首次发现来自光遗传学激活的星形胶质细胞的白细胞介素 10 通过降低基质金属肽酶 2 的活性和减弱神经元凋亡来保护血脑屏障的完整性,这为缺血性中风急性期提供了一种新的治疗方法和靶点。关键词:星形胶质细胞、血脑屏障、白细胞介素 10、光遗传学、中风 引言 星形胶质细胞可以被动支持神经元的发育和存活,或主动调节突触传递和血脑屏障 (BBB) 的完整性 [1]。星形胶质细胞活化是缺血性中风的一个重要特征。活化的星形胶质细胞通过释放炎症因子(如 IL-6、TNF-α、IL-1α、IL-1β、干扰素 γ (IFNγ) 和自由基)发挥有害作用 [2]。它还可以通过释放
摘要:脑肿胀是缺血性中风中死亡和残疾的主要原因。药物被批准用于2型糖尿病(T2DM),并且在其他情况下可能是有益的,但在其他情况下可能是有益的。我们研究了脑缺血的鼠模型,其中具有脑动脉闭塞/再灌注(MCAO/R)。SLC5A2 /SGLT2 mRNA和蛋白质在星形胶质细胞中从头上调。MCAO/R之后,来自小鼠的大脑切片的活细胞成像表明,星形胶质细胞通过增加细胞内Na +和细胞体积和细胞体积(细胞毒性水肿)的响应响应了D-葡萄糖的适度增加,这两者都受到SGLT2抑制剂canagli-lif of of of canagli-canagli-canagli-canagli-canagli-canagli-canagli-canagli-Canagli-Canagli-Canagli-Canagli-Canagli-Canagli抑制。在三种小鼠中风模型中研究了Canagli ozin的作用:非糖尿病和T2DM小鼠具有中等缺血性损伤(MCAO/R,1/24 H)和严重缺血性损伤的非糖尿病小鼠(McAo/R,2/24 H)。canagli lozin减少了中度但不严重的缺血性损伤模型中的梗塞体积。然而,在所有测试的模型中,Canagli ozin显着降低的半球肿胀和改善的神经功能。canagli ozin减少脑肿胀的能力无论对梗塞大小的影响如何具有重要的翻译意义,尤其是在大型缺血性笔触中。
抽象的星形胶质细胞是中枢神经系统中最丰富的细胞亚型。先前的研究认为,星形胶质细胞是脑支持细胞,仅提供神经元的营养。然而,最近的研究发现,星形胶质细胞具有更重要且复杂的大脑功能,例如神经发生,吞噬作用和缺血性耐受性。在缺血性中风后,活化的星形胶质细胞可能通过多种途径发挥神经保护作用或神经XCO。在这篇综述中,我们将讨论星形胶质细胞在脑缺血中的神经保护机制,并主要关注反应性星形胶质细胞增多症或神经胶质疤痕,神经发生,吞噬作用和脑缺血性耐受性,以提供新的临床中风治疗策略。
种类,包括啮齿动物,23,27,28,30,31,38,47,50,51,57-61,人类29,36、40,46,62-64),非人类灵长类动物49,65,