额颞叶痴呆 (FTD) 是第二大最常见的早发性痴呆类型,高达 40% 的病例为家族性病例。患者体内发生突变的基因之一是 CHMP2B,它编码一种复合物中的蛋白质,该复合物对晚期内体成熟至关重要,而晚期内体成熟是通过内溶酶体系统回收膜蛋白的重要过程。在这里,我们利用基因组编辑生成了 CHMP2B 突变的人类胚胎干细胞系,目的是创建人类体外 FTD 疾病模型。到目前为止,大多数研究都集中在神经元改变上;然而,我们提出了一种新的共培养系统,其中神经元和星形胶质细胞由人类胚胎干细胞独立生成并在共培养中结合。通过这种方法,我们发现了 FTD 星形胶质细胞内溶酶体系统的改变、星形胶质细胞吸收和响应谷氨酸的能力更强、神经网络过度活跃以及过度同步。总体而言,我们的数据表明星形胶质细胞的改变先于神经元损伤,并可能触发神经元网络的变化,表明星形胶质细胞在疾病发展中的重要而特殊的作用。
额颞叶痴呆 (FTD) 是第二大最常见的早发性痴呆类型,高达 40% 的病例为家族性病例。患者体内发生突变的基因之一是 CHMP2B,它编码一种复合物中的蛋白质,该复合物对晚期内体成熟至关重要,而晚期内体成熟是通过内溶酶体系统回收膜蛋白的重要过程。在这里,我们利用基因组编辑生成了 CHMP2B 突变的人类胚胎干细胞系,目的是创建人类体外 FTD 疾病模型。到目前为止,大多数研究都集中在神经元改变上;然而,我们提出了一种新的共培养系统,其中神经元和星形胶质细胞由人类胚胎干细胞独立生成并在共培养中结合。通过这种方法,我们发现了 FTD 星形胶质细胞内溶酶体系统的改变、星形胶质细胞吸收和响应谷氨酸的能力更强、神经网络过度活跃以及过度同步。总体而言,我们的数据表明星形胶质细胞的改变先于神经元损伤,并可能触发神经元网络的变化,表明星形胶质细胞在疾病发展中的重要而特殊的作用。
摘要:胶质细胞对于在发育,衰老和疾病期间的大脑功能至关重要。然而,星形胶质体在大脑发育过程中发挥作用与成人病变大脑中所起的作用完全不同。因此,对衰老的大脑和脑血管疾病中星形胶质细胞活性下的病理机制的更深入了解对于指导新的治疗策略的发展至关重要。为此,本综述提供了在发育,衰老和神经退行性疾病(包括脑缺血)过程中星形胶质细胞的转录组活性之间的比较。在胎儿脑发育期间,星形胶质细胞和小胶质细胞通常会影响相同的发育过程,例如神经/神经胶质发生,血管生成,轴突生长,突触发生和突触修剪。在成人大脑中,通过介导突触消除,而小胶质细胞活性与突触可塑性的变化相关,并通过不断感测环境来消除细胞碎片,而成人大脑星形胶质细胞是突触重塑的关键参与者。然而,在病变的大脑星形胶质细胞中,对神经元的能量供应,神经传递和堆积的保护性疤痕隔离病变部位,从周围环境中散发出了重要的功能。炎症,神经变性或脑稳态的丧失会诱导小胶质细胞基因表达,形态和功能的变化,通常称为“启动”小胶质细胞。基因表达的这些变化的特征是吞噬体,溶酶体和抗原表现信号传导途径的富集,并与编码细胞表面受体的基因上调有关。此外,底漆的小胶质细胞的特征是基因网络响应干扰素伽玛的上调。结论。在大脑发育,衰老和神经退行性疾病期间,星形胶质细胞转录组活性的比较可能会为我们提供新的治疗策略,以保护大脑衰老并改善临床结果。关键词:星形胶质细胞,小胶质细胞,大脑,发育,转录组学,神经变性,当前几乎无法获得衰老大脑和脑血管疾病的神经保护疗法。胶质细胞对于
有建立的方法来产生人类多能干细胞(HPSC)的高纯性神经元,星形胶质细胞和小胶质细胞。先前的工作表明,神经胶质细胞在神经元功能中起重要作用,包括突触发生和稳态。然而,神经元单栽培缺乏这些在生理上重要的神经神经元相互作用。我们创建了一种与星形胶质细胞共同培养HPSC衍生的前脑神经元共同培养的方案,以评估神经胶质共培养对神经元形态的影响。然后,我们通过将HPSC衍生的小胶质细胞添加到神经元和星形胶质细胞中,开发了三个文化模型。我们对单培养的神经元进行了伤口损伤测定法。我们的结果表明,与神经元单栽培相比,可以一起培养星形胶质细胞,神经元和小胶质细胞的纯种群以显示功能特性。该系统可用于进一步研究胶质神经元相互作用的功能影响。
1 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands e-mail: f.stoppa@astro.ru.nl 2 Center for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia 3 High Energy Physics/IMAPP, Radboud University, PO Box 9010,6500 Gl Nijmegen,荷兰4 Nikhef,科学园,105,1098 XG阿姆斯特丹,荷兰5.荷兰太空研究所,索邦纳兰2,3584 Ca Utrecht,荷兰8荷兰8天文学研究所,库伊文氏库文氏库素,Celestijnenlaan 200d,3001比利时卢芬,比利时9号卢文9 Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa 11 South African Astronomical Observatory, PO Box 9, Observatory, Cape Town 7935, South Africa 12 Dipartimento di Fisica, Universitá di Trieste, 34127 Trieste, Italy 13 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste,34127意大利Trieste,14 Erlangen Astroparpicle Physics中心,Nikolaus-Fiebiger-STR。2,Erlangen 91058,德国
原料材料已经成功地制成3D物体,包括弹性体[4,5]、热固性树脂[6,7]和水凝胶[8,9]。该领域的不断进步使得打印条件不再那么严格[10],适应的材料范围也更加广泛。[11]水凝胶尤其令人感兴趣,因为3D聚合物网络结合了结构完整性和高含水量,从而产生了可调的3D环境,以纳入功能性生物系统。[12]它们的固有机械性能可以通过嵌入的添加剂(如纳米颗粒[13]或多组分共混物)轻松调节——这些添加剂已经适应了3D打印。 [14,15] 对于生物复合材料 3D 打印,立体光刻 (SLA) [16] 或数字光处理 (DLP) [17] 依赖于低粘度可交联树脂系统,而直接墨水书写 (DIW) 3D 打印可以通过剪切稀化水凝胶实现。[18] 对于这些 DIW 系统,可以采用二次光交联步骤来共价稳定主要 3D 打印对象。[19]
其他声明:是的,存在潜在的竞争利益。WVB担任Novo Nordisk的发言人。SG曾是Cerveau Technologies的科学顾问。GT-B和HCK是Johnson和Johnson Innovative Medicine的员工,并从其母公司Johnson&Johnson获得薪水和股票。nja在莉莉(Lilly)和昆特利(Quanterix)赞助的座谈会上进行了讲座。HZ has served on the scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZPath, Amylyx, Annexon, Apellis, Artery Therapeutics, AZTherapies, Cognito Therapeutics, CogRx, Denali, Eisai, LabCorp, Merry Life, Nervgen, Novo Nordisk, Optoceutics, Passage Bio,Pinteon Therapeutics,Prothena,Red Abbey Labs,Remynd,Roche,Samumed,Samumed,Siemens Healthineers,hearthers,Triplet Therapeutics and Wave在Alzecure,Alzecure,Biogen,Biogen,Biogen,Biogen,Biogen,Cellectricon,Fuujirebio,Novilly,Libiolly,Libioll,Linork和Rocheer and Rooche的座谈会上发表了讲座。 Gothenburg AB(BBS),这是GU Ventures孵化器计划的一部分(外部提交的工作)。kb曾担任ABBVIE,AC IMMUNE,ALZPATH,ARIBIO,BIOANCIC,BIOGON,BIOGEN,EISAI,LILLY,MOLEAC PTE的顾问和咨询委员会。erz在下一家创新治疗学的科学顾问委员会任职。所有其他作者都声明他们没有竞争利益。Ltd,Neurimmune,Novartis,Ono Pharma,Prothena,Roche Diagnostics和Siemens Helthineers;曾在朱利叶斯临床和诺华的数据监测委员会任职;已经进行了讲座,生产教育材料并参加了有关AC免疫,Biogen,Celdara Medical,Eisai和Roche诊断的教育计划;并且是哥德堡AB(BBS)的脑生物标志物解决方案的联合创始人,该解决方案是本文介绍的工作之外的GU Ventures孵化器计划的一部分。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
摘要:与糖尿病相关的认知功能障碍(DACD)的患病率增加到13.5%。痴呆症是最严重的DACD,是糖尿病患者的第二大死亡原因。因此,需要紧急探索DACD放慢或停止其进展的潜在机制。Given that the sigma-1 receptor (Sig-1R), a chaperone protein located in the endoplasmic reticulum (ER)-mitochondrion contact membranes to regulate ER stress (ERS), is associated with cognitive outcomes in neurodegenerative diseases, this study aimed to investigate the role of astrocytic Sig-1R in DACD and its underlying mechanism.在这里,我们检查了来自不同浓度的葡萄糖和处理的原代星形胶质细胞的ER和补体组件3/3A(C3/C3A)的水平。随后,将HT22神经元培养在不同的星形胶质细胞条件培养基中,并检测到突触蛋白的表达。我们构建了1型糖尿病(T1DM)模型,以评估突触和认知功能变化的星形细胞SIG-1R机制。在体外,高葡萄糖浓度下调的Sig-1r和星形胶质细胞中的ERS加重,导致突触降低。Pre-084,一种高级和选择性Sig-1r激动剂,抑制了星形胶质细胞和补体级联反应并恢复了突触损伤,而Sig-1R拮抗剂则显示了相反的结果。C3a受体拮抗剂(C3ARA)可以模仿084年前的影响并发挥神经保护作用。在体内,084年前大大降低了用T1DM的小鼠中的ER-Mitochrion接触,ERS的激活和C3/C3A分泌。此外,在084和C3ARA治疗组中,用T1DM小鼠的突触损失和神经行为功能障碍均不太明显。这些发现表明SIG-1R激活减少了星形胶质细胞ER-线粒体接触,ERS激活和补体介导的T1DM中的突触损伤。这项研究提出了治疗DACD的机制和潜在治疗方法。
Stobart补充说,触摸对象时人类在繁忙十字路口的高峰时段的流量就像高峰时段一样。“星形胶质细胞是将信息流向目的地的交通信号灯。当NMDA受体信号在星形胶质细胞中破坏时,就像左转的左转光一样。某些信息流可以通过交叉路口直接继续,但没有左转意味着某些信息无法达到目标。”