1 Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India, 2 School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India, 3 Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México墨西哥城,苏格兰乡村学院(SRUC)(SRUC BARONY校园),苏格兰乡村学院(SRUC)4个生物填充和高级材料研究中心以及英国邓弗里斯(Dumfries)的SRUC男爵校园(SRUC),植物学和微生物学系5 (ARC),吉萨,埃及,7植物生产系,食品与农业科学学院,沙特国王大学,沙特阿拉伯利雅得
3。uncini a,valat j-m。外围外围的自身免疫性nodo-paranoopathies:j精神病学2018; 89:627。4。Querol L,Illa I.天堂和其他自我报告的自我报告。Neurol opin Current2015; 284-479。 5。 Delmont E,Brodovitch A,Cloud L和Al。 抗体 J Neurol 2020; 267:3664-3672。 6。 Stegel H,Vural A,A-M和Al。 抗 - 泛神经蛋白酶IgG3作为神经病暴发。 Neuroinflam Neurolol。 2019:6:603。 7。 Delmont E,手C,Querol L和Al。 秋季神经素的淋巴结同工型在延髓性多神经病中。 大脑 2017; 140:1851-1858。 8。 Corsica A,Lombard R,Briani C和Al。 CIDP中的Neurophansin,Connectin-1和Connectin-Cosociation蛋白1:IgG同种型的临床相关性。 Neuroinflam Neurolol。 2020; 7:e639。 9。 Motte J,Fisse AL,Full N和Al。 对环磷酸,利妥昔单抗和慢性免疫媒体感觉运动发动机神经病的治疗反应。 adv adv diso 2021; 14:14:17664284219963。 10。 Burnor E,Yang L,Zhou H和Al。2015; 284-479。5。Delmont E,Brodovitch A,Cloud L和Al。抗体J Neurol2020; 267:3664-3672。6。Stegel H,Vural A,A-M和Al。抗 - 泛神经蛋白酶IgG3作为神经病暴发。Neuroinflam Neurolol。2019:6:603。 7。 Delmont E,手C,Querol L和Al。 秋季神经素的淋巴结同工型在延髓性多神经病中。 大脑 2017; 140:1851-1858。 8。 Corsica A,Lombard R,Briani C和Al。 CIDP中的Neurophansin,Connectin-1和Connectin-Cosociation蛋白1:IgG同种型的临床相关性。 Neuroinflam Neurolol。 2020; 7:e639。 9。 Motte J,Fisse AL,Full N和Al。 对环磷酸,利妥昔单抗和慢性免疫媒体感觉运动发动机神经病的治疗反应。 adv adv diso 2021; 14:14:17664284219963。 10。 Burnor E,Yang L,Zhou H和Al。2019:6:603。7。Delmont E,手C,Querol L和Al。 秋季神经素的淋巴结同工型在延髓性多神经病中。 大脑 2017; 140:1851-1858。 8。 Corsica A,Lombard R,Briani C和Al。 CIDP中的Neurophansin,Connectin-1和Connectin-Cosociation蛋白1:IgG同种型的临床相关性。 Neuroinflam Neurolol。 2020; 7:e639。 9。 Motte J,Fisse AL,Full N和Al。 对环磷酸,利妥昔单抗和慢性免疫媒体感觉运动发动机神经病的治疗反应。 adv adv diso 2021; 14:14:17664284219963。 10。 Burnor E,Yang L,Zhou H和Al。Delmont E,手C,Querol L和Al。秋季神经素的淋巴结同工型在延髓性多神经病中。大脑2017; 140:1851-1858。8。Corsica A,Lombard R,Briani C和Al。 CIDP中的Neurophansin,Connectin-1和Connectin-Cosociation蛋白1:IgG同种型的临床相关性。 Neuroinflam Neurolol。 2020; 7:e639。 9。 Motte J,Fisse AL,Full N和Al。 对环磷酸,利妥昔单抗和慢性免疫媒体感觉运动发动机神经病的治疗反应。 adv adv diso 2021; 14:14:17664284219963。 10。 Burnor E,Yang L,Zhou H和Al。Corsica A,Lombard R,Briani C和Al。CIDP中的Neurophansin,Connectin-1和Connectin-Cosociation蛋白1:IgG同种型的临床相关性。Neuroinflam Neurolol。2020; 7:e639。9。Motte J,Fisse AL,Full N和Al。 对环磷酸,利妥昔单抗和慢性免疫媒体感觉运动发动机神经病的治疗反应。 adv adv diso 2021; 14:14:17664284219963。 10。 Burnor E,Yang L,Zhou H和Al。Motte J,Fisse AL,Full N和Al。对环磷酸,利妥昔单抗和慢性免疫媒体感觉运动发动机神经病的治疗反应。adv adv diso2021; 14:14:17664284219963。10。Burnor E,Yang L,Zhou H和Al。抗体和偶像崇拜神经病。神经病学2018; 90:e31 - e311。Valat J-M,Mathis S,Magy L和Al。140/186抗体:Ultrastro-Turrals研究。大脑2018; 141:36 - E56。 12。 Querol L,Rock-Garcia R,Diaz-Maner J和Al。 用抗偏瘤蛋白抗体的治疗转移CIDP。 Neuroinflam Neurolol。 2015; 2(5):E1 13。 Athanasopoo D,Motte J,Al Faith和Al。 在NF155偏态性病中研究气味的超同质和角膜造成显微镜的纵向研究。 在Clin Transl Neur 中 epub。 2020; 7(6):1061 - 1068。 14。 pyterocoil K,Yoon M-S,Cross I,Reinaning-Schick A,Gold R,严重的难治性CIDP:这大约是用资产阶级处理的10页。 J Neurol 2017; 264:2010-2020。 15。 气候R,Sgodzai M,Sgodzai M和Al。 资产阶级对自身免疫性神经炎的剂量抑制剂量的免疫密集型作用。 常见的大脑 epub。 2021;在印刷中接受。2018; 141:36 - E56。12。Querol L,Rock-Garcia R,Diaz-Maner J和Al。用抗偏瘤蛋白抗体的治疗转移CIDP。Neuroinflam Neurolol。2015; 2(5):E113。Athanasopoo D,Motte J,Al Faith和Al。在NF155偏态性病中研究气味的超同质和角膜造成显微镜的纵向研究。在Clin Transl Neurepub。2020; 7(6):1061 - 1068。14。pyterocoil K,Yoon M-S,Cross I,Reinaning-Schick A,Gold R,严重的难治性CIDP:这大约是用资产阶级处理的10页。J Neurol2017; 264:2010-2020。15。气候R,Sgodzai M,Sgodzai M和Al。资产阶级对自身免疫性神经炎的剂量抑制剂量的免疫密集型作用。常见的大脑epub。2021;在印刷中接受。
自 1961 年起,德国采购了 916 架洛克希德 F-104 星式战斗机,其中 292 架坠毁,116 名飞行员丧生。本研究项目的目的是找出这些飞机坠毁的原因,以及星式战斗机坠毁的原因是否与德国其他军用飞机不同。通过审查原始事故文件,分析了 1978 年至 1986 年间发生的 71 起德国 F-104 事故。使用人为因素分析和分类系统 (HFACS) 1 级分析作为方法。结果发现,在审查的德国 F-104 事故中,超过 50% 的事故是由于技术和/或物理环境造成的。样本中超过一半的事故与发动机有关。结论是,F-104 确实比同时期的其他机型更容易发生事故。此外,J-79 发动机被发现是 F-104 安全记录中的一个薄弱环节,而星式战斗机难以操控的特性导致了高水平的基于技能的错误。
图2。CS中的各向同性超导间隙(V 0.86 TA 0.14)3 SB 5。 a。 费米表面映射。 b。 在k F处的温度依赖性EDC在a中标记为黑线的切割。 c-e,分别与a,b和d fs一起进行k f。 f,检查的位置K f。 g,从拟合到k f的EDC的SC间隙幅度。 阴影区域表示错误条。CS中的各向同性超导间隙(V 0.86 TA 0.14)3 SB 5。a。费米表面映射。b。在k F处的温度依赖性EDC在a中标记为黑线的切割。c-e,分别与a,b和d fs一起进行k f。f,检查的位置K f。g,从拟合到k f的EDC的SC间隙幅度。阴影区域表示错误条。
薄膜天线技术是一种非常有前途的实现大口径、轻质量、小收纳体积的方法。在过去的几十年中,有源和无源薄膜天线得到了广泛的研究,但由于面形精度保持、在轨可靠性、环境兼容性等诸多挑战,其实际星载应用很少。本文总结了星载薄膜天线的历史和最新进展,分别介绍了曲面反射器、共形有源薄膜天线、平面阵列薄膜天线和平面反射阵列薄膜天线。介绍了射频设计、展开机理、材料、实验、应用和分析方法。通过总结现有薄膜天线的优势和挑战,本文旨在展望星载薄膜天线存在的问题和未来发展趋势。
在探索月球、行星、小行星等时,探测器必须具有较高的智能水平,才能安全可靠地着陆并探索大面积的地表区域。在我们的实验室中,我们正在进行无人探测机器人自主探索月球和行星表面未知环境的研究。
几乎所有现存的动物谱系中的物种都能够再生身体部位。但是,尚不清楚控制再生的基因表达程序是否在进化上保守。脆性恒星是一类具有出色再生能力的棘皮动物类,但是有限的基因组资源阻碍了对该组再生遗传基础的研究。在这里,我们报告了脆性恒星Amphiura Filiformis的染色体规模的基因组组件。我们表明,脆性星基因组是到目前为止测序的棘皮动物中最重新排列的,其重新组织的HOX群集让人联想到海胆中观察到的重排。此外,我们在脆性恒星成人手臂再生过程中对基因表达进行了广泛的分析,并确定了控制伤口愈合,增殖和分化的基因表达的顺序波。我们与其他无脊椎动物和脊椎动物模型进行了比较转录组分析,以进行附加物再生,并发现了数百个具有保守表达动力学的基因,尤其是在再生的增殖阶段。我们的发现强调了棘皮动物检测脊椎动物和经典无脊椎动物再生模型系统之间的远程表达保护的关键重要性。
包括偏见,无偏的根平方误差(URMSE)和相关性,包括在图1和图2中。3G-I。 在所有情况下,重建的数据集都比重新分析数据集较低,相关性较高。 URMSE是通过从参考SWE和每组产品SWE值中删除平均值,然后用这些无偏数据集计算根平方误差的平均值。3G-I。在所有情况下,重建的数据集都比重新分析数据集较低,相关性较高。URMSE是通过从参考SWE和每组产品SWE值中删除平均值,然后用这些无偏数据集计算根平方误差的平均值。