申请入读飞机维修工程课程的考生可通过规定的在线或纸质申请方式向学院申请。1.考生应在申请中附上以下文件:a) 出生日期证明或有出生日期的中学毕业证书(两份自认证副本)。b) 10+2 的原始成绩单和两份自认证副本。c) 移民证明(原件)。d) 品格证明。e) 4 张护照大小的彩色照片。f) 入学费(卢比40,000/-)应以汇票形式支付,汇票以新德里或 NEFT 或现金支付。[注:费用不得以现金形式支付给任何人,除非学院办公室位于古尔冈一期新帕拉姆维哈尔 P-76 号。]g) M.B.B.S. 出具的医疗证明。体能和色觉/夜视医生。2.被选中的候选人应在规定日期前支付费用和其他费用,否则录取通知将被取消,并将席位提供给其他候选人。3.入学时,所有上述证书的原件均须提交给学院。Matric 和 10+2 证书将被发送以供核实,并在课程期间保留。这些将在课程结束后退还。4.申请可以亲自到学院办公室提交,也可以连同 D.D. 形式的注册费一起邮寄到学院办公室。任何工作日 09:00 至 17:00 之间。(周一至周六)5.也可以在 www.staraviationindia.org 上在线填写申请表
部署阶段完成后,ION 将开始在轨测试第三方有效载荷,包括 D-Orbit 云平台的第二阶段测试,该平台旨在提供太空中的分布式高性能数据分析计算和存储功能。对于这次任务,D-Orbit 正在与 Unibap 和欧洲航天局 (ESA) 合作,他们正在支持研究机构 VTT 开发的高光谱电光仪器的在轨测试。该平台允许第三方上传和执行云应用程序和 AI 工作负载,以便在图像创建后立即进行处理,从而能够在创纪录的时间内将结果发送给用户。第一次测试活动是在 ION 的上一次任务期间进行的,成功执行了来自各个合作伙伴的 23 个独立的 SpaceCloud 兼容应用程序。
Starfish Space 为报废卫星提供在轨卫星服务,用于清理轨道碎片、管理太空交通和延长现有卫星的寿命,从而减少地球轨道和地月空间中的废弃物体数量,并最大限度地提高功能性航天器的利用率。目前,卫星服务预计将成为一个收入 143 亿美元的行业,1 尚未分配专用频谱供在轨优先使用。这给这一新兴行业领域带来了巨大的行政障碍。这条评论提供了 Starfish Space 作为行业运营商的观点,该公司预计最早在 2025 年提供商业卫星服务。Starfish Space 建议 NTIA 审查用于“地球观测”的 X 波段频谱分配,以允许非地球观测但由视觉驱动的卫星(例如服务卫星)使用允许图像下行的频率。还呼吁考虑使用 S 波段和 UHF 为这些航天器上的遥测、跟踪和指挥 (TT&C) 功能提供专用频谱。
1 范围 ................................................................................................................................................................ 5 2 参考标准和规范 .............................................................................................................................................. 5 3 术语和定义 ................................................................................................................................................ 5 4 缩略语 ...................................................................................................................................................... 6 5 数据广播 ...................................................................................................................................................... 7 5.1 MPT:直接广播 ............................................................................................................................. 7 5.1.1 MPT 实时数据广播的内容 ............................................................................................. 7 5.1.2 MPT 实时数据广播的流程 ............................................................................................. 8 5.1.3 多负荷数据处理 ............................................................................................................. 8 5.1.4 加扰 ............................................................................................................................................. 9 5.1.5 纠错编码 ............................................................................................................................. 10 5.1.6 调制 ............................................................................................................................................. 13 5.1.7 MPT 索引5.1.8 MPT 链路控制链路计算 ...................................................................................................... 16 5.2 FY3-E 数据传输格式 ................................................................................................................ 18 5.2.1 源包格式 ........................................................................................................................ 18 5.2.2 低速率载荷数据流 ............................................................................................................. 18 5.3 轨道参数 ...................................................................................................................................... 24
部署阶段完成后,ION 将开始在轨测试第三方有效载荷,包括 D-Orbit 云平台的第二阶段测试,该平台旨在提供太空中的分布式高性能数据分析计算和存储功能。对于这次任务,D-Orbit 正在与 Unibap 和欧洲航天局 (ESA) 合作,他们正在支持研究机构 VTT 开发的高光谱电光仪器的在轨测试。该平台允许第三方上传和执行云应用程序和 AI 工作负载,以便在图像创建后立即进行处理,从而能够在创纪录的时间内将结果发送给用户。第一次测试活动是在 ION 的上一次任务期间进行的,成功执行了来自各个合作伙伴的 23 个独立的 SpaceCloud 兼容应用程序。
在过去的 15 年里,被称为立方体卫星 (CubeSat) 的小型卫星已被用来研究太空环境对生物体的影响。迄今为止,所有生物立方体卫星任务均在低地球轨道 (LEO) 上进行研究,每个任务都比上一个任务改进了其生物支持子系统。NASA 即将发射的生物立方体卫星任务 BioSentinel 将作为 Artemis 1 的次要有效载荷发射,最终到达低地球轨道以外的太阳中心轨道,并受到地球磁层的保护。BioSentinel 的主要目标是 1) 研究深空辐射环境的生物影响和 2) 发展我们的技术能力以支持深空生物研究。BioSentinel 中的仪器和子系统继承了之前的立方体卫星任务(例如流体学、光学、热控制),但在许多层面上得到了扩展。 BioSentinel 改进了材料和设计(例如,降低卡片的蒸汽渗透性以保持低湿度;增加了带有内部止回阀、干燥剂室和气泡捕集器的流体歧管,用于每个单独的流体卡),并增加了新的发现工具(例如,机载 LET 光谱仪)。本期观点的主要目的是强调过去和正在进行的 NASA 生物立方体卫星任务中使用的流体系统的演变,并强调这些系统可以优化以用于未来 LEO 以外的实验的方面。
摘要:在太空探索过程中,长期连续氧供应至关重要。考虑成本和可行性,原位资源利用率(ISRU)可能是一个有前途的解决方案。CO 2向O 2的转换是ISRU的关键点。此外,在火星大气中,丰富的CO 2资源的利用是载人深空探索领域的重要话题。Sabatier反应,Bosch反应和固体氧化电解(SOE)是降低CO 2的众所周知的技术。但是,上述所有技术都需要大量的能耗。在本文中,我们基于微流体控制在室温下设计了一种电化学膜反应器,以减少外星空间中的CO 2。在该系统中,H 2 O在阳极上被氧化为O 2,而CO 2在阴极上降低至C 2 H 4。C 2 H 4的最高法拉第效率(Fe)为72.7%,单一通信碳效率朝向C 2 H 4(SPCE-C 2 H 4)为4.64%。此外,采用了微流体控制技术来克服微重力环境的影响。该研究可以为在空间探索过程中的长期连续氧供应提供解决方案。