摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。
直接融合驱动器(DFD)及其陆地对应物,普林斯顿场逆转配置(PFRC)反应堆在过去十年中已经有了显着的发展。各个小组对发动机和相关技术的所需规范进行了详细的研究,以便将电动的航空设施和有效载荷提供。多项研究还使用经验特异性功率缩放关系和血浆流量模拟解决了推力产生机制。最近的研究设计了航天器为地球第二拉格朗日的任务,火星,冥王星等跨性别尸体以及邻近的恒星系统Alpha Centauri A和B.然而,需要使用科学缩放关系和AB Inito计算来详细设计发动机组件,以开发用于原型和测试的物理系统。在批判性地分析了DFD和基础融合反应堆的参考设计之后,本文解决了技术差距,并提出了提高针对先前研究中概述目标的规格的途径,同时考虑成本。此外,作者提出了原型引擎和磁流失动力转换系统设计,以研究与DFD实际实施相关的工程障碍。
正如Kurt Vonnegut(2005)诗意地说:“我们在地球上是为了放屁。不要让任何人告诉你任何不同。他指的是人类倾向于保持好奇心的趋势,即使他们成人成人,以及我们通过探索超越的东西来满足好奇心的倾向。通过想象和猜测表达的可能是什么,可能是什么,一直是我们发展的驱动力。因此,在我们历史上的科幻小说中,以一种或另一种形式发挥了至关重要的作用,作为科学和技术变革和成就的前沿。艺术家以发现的顺序排名第一。是他们,故事讲述者,作家,画家,电影制片人,他们带领我们获得新的见解,克服传统的障碍和开放的边界。需要将窗帘拉到一边,并且在比赛继续进行之前揭示了舞台。,因此,它与我们对空间的探索和使用有关。与空间操作,旅行和居住相关的大多数概念首先以虚构的形式提出,作为对众所周知和猜测的简单推断,基于对那里的内容的含糊不清的理解。但是,因此,我们现在拥有广泛的通信网络,依靠地球围绕轨道的数千颗卫星,机器人调查火星,样本回归任务飞往小行星和彗星等。我们甚至有一个小殖民地居住在空间站盘旋地球。那么,接下来会发生什么?
当应用于地月轨道模式时,利用经典的地面和/或太空传感器在近地空间执行空间领域感知 (SDA) 变得越来越困难。因此,地月周期轨道被提出作为填补这一能力空白的一种手段。虽然周期轨道有许多用途,但这项工作评估了各种地月周期轨道在样本 SDA 任务架构中的有效性。具体而言,对地月空间内几种不同类型的周期轨道进行了建模,以评估它们在跟踪/监视围绕 L1 拉格朗日点的 Lyapunov 轨道上均匀分布的两颗假想卫星方面的各自有效性。所分析的轨道是在圆形限制三体问题 (CR3BP) 中建模的。还介绍了在过渡到双圆限制四体问题 (BCR4BP) 时保持相同轨迹所需的推进剂。为了比较从 CR3BP 过渡到 BCR4BP 等更高保真度模型时的轨道维护成本,我们寻求实施多种动力学模型。概念性空间对空间传感器用于确定 SDA 任务周期轨道几何的限制,该限制与范围、能力和太阳/地球/月球排斥角有关。视觉星等用于确定目标是否可见。结果列表与地月 SDA 最有效周期轨道的建议一起呈现。
本文件是 Alexander Q. Gilbert 领导的法律审查的精简版,题为:“重大联邦行动对太空环境质量产生重大影响:将 NEPA 应用于联邦和联邦授权的外层空间活动。” 在这里,我们讨论了太空环境的未来,以及它如何日益成为人类环境,包括机器人和人类继续在轨道上存在、计划和提议的机器人和人类在月球和火星等天体上的存在、计划中的太空采矿项目、通信卫星低地球轨道的增加使用以及人类对太空的其他利用。 因此,我们必须像在地球上一样评估和保护这些环境。 为了优先减轻污染威胁、避免冲突和促进太空的可持续性,所有这些都是为了确保参与者保持平等和安全的太空访问,我们建议将《国家环境政策法》(NEPA)应用于太空任务。我们为参与太空任务的人员提出了三个环境最佳实践的例子,供他们参考:在执行离地任务之前、期间和之后采用预防和沟通结构、环境影响声明以及可能影响环境的工具的透明度(包括放射性同位素电源、飞行器丢失或轨迹丢失时的计划等)。有关 NEPA 的潜在空间应用、NEPA 的法定文本以及 NEPA 与空间法和空间司法先例的关系的更多讨论,我们建议阅读完整的法律评论:https://environs.law.ucdavis.edu/volumes/44/2/Gilbert.pdf。
■ 摘要 标准恒星光度测定法在二十世纪后半叶占据主导地位,并在 20 世纪 80 年代达到顶峰。与照相底片相比,它的引入充分利用了光电倍增管的高灵敏度和大动态范围。随着光电探测器量子效率的提高和波长范围进一步扩展到红色,标准系统得到了修改和改进,与原始系统的偏差也随之增加。所有光学和红外观测都革命性地转向区域探测器,这迫使标准系统进一步改变,许多宽带和中波段光度测定的精度和准确度受到影响,直到采用更合适的观测技术和标准降低程序。但最大的革命发生在全天空光度测量的产生过程中。Hipparcos/Tycho 是太空望远镜,但大多数望远镜(如 2MASS)是地面专用巡天望远镜。未来很可能不再使用某些标准测光系统测量物体,而是直接在虚拟天文台目录中查找大多数物体的星等和颜色。这篇评论将概述标准恒星测光的历史,并研究标准系统的校准和实现。最后,模型大气通量现在非常逼真,合成测光为校准所有测光系统提供了最佳前景。观测到的光谱测光的合成测光也理所当然地应该用于提供标准系统内的颜色,并深入了解不寻常恒星、星团和遥远星系的光谱和颜色。
■ 摘要 标准恒星光度测定法在二十世纪后半叶占据主导地位,并在 20 世纪 80 年代达到顶峰。与照相底片相比,它的引入充分利用了光电倍增管的高灵敏度和大动态范围。随着光电探测器量子效率的提高和波长范围进一步扩展到红色,标准系统得到了修改和改进,与原始系统的偏差也随之增加。所有光学和红外观测都革命性地转向区域探测器,这迫使标准系统进一步改变,许多宽带和中波段光度测定的精度和准确度受到影响,直到采用更合适的观测技术和标准降低程序。但最大的革命发生在全天空光度测量的产生过程中。Hipparcos/Tycho 是太空望远镜,但大多数望远镜(如 2MASS)是地面专用巡天望远镜。未来很可能不再使用某些标准测光系统测量物体,而是直接在虚拟天文台目录中查找大多数物体的星等和颜色。这篇评论将概述标准恒星测光的历史,并研究标准系统的校准和实现。最后,模型大气通量现在非常逼真,合成测光为校准所有测光系统提供了最佳前景。观测到的光谱测光的合成测光也理所当然地应该用于提供标准系统内的颜色,并深入了解不寻常恒星、星团和遥远星系的光谱和颜色。
太空探索对于全球安全和技术发展至关重要,但政治领导人通常会忽略其重要性。本政策论文展示了太空探索在全球安全和技术发展中的作用以及政治支持的必要性,因为太空勘探的代价很高,这是依赖联邦资金的成本。政治支持是由政治环境激励的。赢得太空竞赛是权力的重要证明时,政治支持是最高的。但是,在冷战结束后,对太空飞行的政治兴趣逐渐消失,资金减少了。政治上的失调具有全球性。太空危害构成了对行星防御的严重威胁,并以不同的形式出现,例如太空岩石,人造太空碎片和太空武器化。这些危害威胁到轨道上的卫星,在包括通信,监视和导航在内的全球行动中发挥了重要作用。此外,小行星或彗星等近地球物体严重威胁了全球安全。近地物体的灾难性影响可能威胁到地球上的生命,甚至成为灭绝事件。国家太空计划在缓解气候变化方面也起着重要作用,这是当前对全球安全的重大威胁。因此,为空间计划设定正确的方向,并确保足够的空间资金对于全球安全至关重要。使用定性二级分析和因果解释方法,本政策论文通过比较NASA的预算和国家空间政策几十年来分析政治支持,以及资金如何影响技术进步和发展。通过生成政策建议来确定国家空间计划的最佳条件,以蓬勃发展并履行其在维持全球安全方面的作用,从而结束了。
摘要:21 世纪实验结构生物学面临的挑战之一是观察化学反应的发生。金黄色葡萄球菌 (S. aureus) DNA 旋转酶是一种 IIA 型拓扑异构酶,可产生暂时的双链 DNA 断裂来调节 DNA 拓扑结构。吉泊汀、佐利氟达星和喹诺酮类莫西沙星等药物可以稳定这些通常短暂的 DNA 链断裂并杀死细菌。在相同的 P6 1 空间群 (a = b ≈ 93 Å,c ≈ 412 Å) 中,已解析出含有吉泊汀前体 (2.1 Å GSK2999423) 或双裂 DNA 和佐利氟达星 (或其前体 QPT-1) 的未裂解 DNA 的晶体结构。这表明可能可以观察到该 P6 1 空间群中的两个 DNA 切割步骤(和两个 DNA 连接步骤)。这里,解决了这种晶体形式的 2.58 Å 异常锰数据集,并重新细化了这种晶体形式的四个先前的晶体结构(1.98 Å、2.1 Å、2.5 Å 和 2.65 Å)以阐明晶体接触。这些结构清楚地表明了单一移动金属机制——在附带的(第二篇)论文中提出。先前发表的酵母拓扑异构酶 II 的 2.98 Å 结构,它在晶体二重轴周围具有静态无序,被发表为在一个活性位点包含两种金属。这个 2.98 Å 酵母结构的重新细化坐标与其他 IIA 型拓扑异构酶结构一致,在两个不同的活性位点各只有一个金属离子。
摘要该特定论文探讨了空间“电推进系统”如何成为最有前途的未来派航天器推进技术之一,比化学和其他推进技术具有独特的优势。尽管共享某些相似之处,但空间航天器和空中飞行器的推进系统却不同,并且在这里探索了从下层大气到上层大气层的可能性的战略和系统方法,但在这里也很好地强调了这一点,尽管这也很简短。此外,关于特定的脉冲和产生的推力,在常规推进系统与电气推进系统之间进行了简要比较。此外,简要讨论了陆地气氛中不同的变异条件,以解决空间电气推进系统的各种挑战,并为这些挑战寻找新颖和创新的解决方案。还提到了当前情况下电气推进系统和各种推进器的不同类型的应用。主要重点是电力推进系统用于低空地轨道卫星的可行性,这些卫星主要用于地球观察,土地,水资源映射,气候警告系统,地球科学等。目前,从战略上开始进入电气推进系统及其在地球上层大气中的关键作用。虽然,但是,空间电动推进系统的其他各种应用,例如中高度的地球轨道卫星,主要用于航行目的,用于电信的地理卫星等,太空运输 - 发射器踢阶段,太空踢阶段,太空科学 - 互动空间探索等是这些特定纸张的范围,无法探索这些令人兴奋的范围。尽管如此,诸如卫星重量减轻,发射成本的减少,卫星的效率和功能的提高,空间碎屑数量减少,无毒绿色推进剂的使用减少,也将在该论文的范围之外讨论。