摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
1. 电源板(底部)具有标称和冗余电源输入选择,并为 FPGA 提供五条主电源轨。其他电源轨由另外两块板上的调节器提供。使用德州仪器的航天级电源组件。2. 包含 Xilinx ® KU060 FPGA 的 FPGA 板(中间)。PCB 占用空间可容纳商用部分、工业部分或耐辐射部分。使用工业级 FPGA。FPGA 周围有六个 Elara 连接器,用于承载 SpaceFibre 电信号。每个连接器提供四条 SpaceFibre 通道。两个连接器各承载一个四通道端口,其他四个连接器各承载两个双通道端口。3. 配置和清理板(顶部),用于配置和监控 KU060 FPGA。配置来自 EEPROM 或通过 SpaceWire 接口。EEPROM 可以通过 SpaceWire 进行编程。
欧洲空间碳观测站 (SCARBO) 计划旨在评估温室气体 (GHG) 人为排放的监测,目标是以可承受的成本在一天之内重新访问地球。主要项目范围之一是混合星座的可行性研究,其中包括高精度参考任务(哥白尼 CO2M 或 CNES MicroCarb 任务)和搭载创新微型有效载荷的 24 颗小型卫星。小型卫星星座的关键温室气体传感器是 NanoCarb 概念,这是一种前所未有的千克级傅里叶变换成像光谱仪。我们在此报告了示范机载活动的一些初步实验结果。已经开发出一种用于测量 CO 2 和 CH 4 的低成本 2 波段原型,然后将其集成到 SAFIRE 的 Falcon-20 上,并与 SRON 的 SPEX 气溶胶传感器相结合。 2020 年 10 月,我们从法国图卢兹的弗朗卡萨尔机场飞越西班牙、意大利,然后飞往波兰。即使我们没有机会飞越发电厂,我们也已经获取了大量数据并正在处理中。在介绍仪器、任务和数据产品后,我们评估了数据质量和模型的可靠性。我们最终根据背景得出 CO 2 和 CH 4 柱的预期灵敏度分别约为 1.5-2.5% 和 5%。我们最终证明了 NanoCarb 的第一个 TRL5 原型的可操作性。
致谢................................................................................................................ iii 图表列表.................................................................................................................... vi 表格列表.................................................................................................................... vii 摘要................................................................................................................................... viii I.简介.......................................................................................................................1 II.文献综述................................................................................................................3 简介................................................................................................................................3 全球信息网格................................................................................................................3 全球网格........................................................................................................................4 部队模板概念................................................................................................................7 联合 STARS................................................................................................................10 Link-16 数据链.............................................................................................................11 Link-16 特性.............................................................................................................11 硬件架构.............................................................................................................13 时分多址协议.............................................................................................................16 传输访问模式............................................................................................................17 信息交换要求............................................................................................................18 原则............................................................................................................................20 总结............................................................................................................................23 III.方法论................................................................................................................24 问题定义.................................................................................................................24 目标和假设...............................................................................................................25 方法................................................................................................................25 系统边界.................................................................................................................26 系统服务.................................................................................................................27 性能指标.................................................................................................................27 参数.............................................................................................................................28 系统.............................................................................................................................28 工作负载.................................................................................................................30 因素.............................................................................................................................30 网络拓扑.................................................................................................................30 任务.............................................................................................................................31 评估技术.................................................................................................................32
Dated: April 9, 2024 Respectfully submitted, /s/ Rebecca L. Davis Rebecca Davis Victoria Yundt Lozeau Drury LLP 1939 Harrison Street, Suite 150 Oakland, California 94612 510-836-4200 rebecca@lozeaudrury.com victoria@lozeaudrury.com Attorneys for Supporters Alliance for Environmental Responsibility
RWY 07:爬升 RM 073° 至 1200(1041),然后直接爬升至航路安全高度。 RWY 25:爬升 RM 253° 至 1200(1041),然后直接爬升至航路安全高度。 RWY 02:以 4.1% (1) 的速度爬升 RM 017° 至 400 (241),然后爬升至 1200 (1041),然后直接爬升至航路安全高度。 (1) 理论上升坡度,确定障碍:距离 DER 870 米、轴线左侧 285 米处的 278 英尺教堂。该斜坡忽略了距离 DER 41 米、轴线左侧 160 米处的 235 英尺树林。 RWY 20:爬升 RM 197° 至 1200(1041),然后直接航线上升至航路安全高度。观察:AD 限制使用。参见特别说明。 * 作战任务:
随着果树作物品种的驯化和改良,果实大小也发生了显著的进化。在番茄 (Solanum lycopersicum) 中,CLAVATA-WUSCHEL 信号通路基因的自然发生顺式调控突变导致果实大小显著增加,产生增大的分生组织,从而使花长出额外的器官,果实也更大。在这项工作中,通过结合测序定位和 CRISPR/Cas9 基因组编辑方法,我们分离出了一种调控花分生组织活性的 AP2/ERF 转录因子——过多花器官 (ENO)。因此,ENO 基因突变会导致植物因花分生组织增大而产出更大的多室果实。遗传分析表明,eno 与 LOCULE NUMBER(编码 SlWUS )和 FASCIATED(编码 SlCLV3 )基因座的突变表现出协同效应,这两个基因座是栽培番茄驯化过程中果实大小进化的关键因素。我们的研究结果表明,eno 突变会以花特异性的方式导致 SlWUS 表达域的大幅扩增。体外结合结果表明,ENO 能够与 SlWUS 启动子区内的 GGC-box 顺式调控元件相互作用,表明 ENO 直接调控 SlWUS 表达域以维持花干细胞稳态。此外,对 ENO 基因座自然等位基因变异的研究证明,ENO 启动子中的顺式调控突变在驯化过程中受到了正向选择的靶向,为现代番茄果腔数量和果实大小的大幅增加奠定了基础。
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
与国际自然保护联盟或IUCN(2016年),约有1088种被归类为濒危或严重威胁,其中27%被评估为数据缺陷,表明数据不足以完全评估保护状态。截至2016年9月,国际自然保护联盟(IUCN)列出了507种濒临灭绝的软体动物,占所有评估的软体动物物种的7.0%。此外,IUCN列出了9个Mollusk亚种为濒危。这些数量强调了被归类为濒危物种的大量软体动物,强调了保护这些物种及其栖息地的必要性(IUCN,2016年)。对软体动物种群的持续威胁不仅对环境和生态系统有害,而且是由于
