自2005年FDA批准Sorafenib以来,口服多次激酶抑制剂已成为转移性肾细胞癌(MRCC)的基石治疗。2021年更新的欧洲泌尿外科协会肾细胞癌指南建议将免疫检查点抑制剂加上口服酪氨酸激酶抑制剂(TKI)组合,以对MRCC进行第一线治疗。相对于单独的口服TKI,这种方法在无进展和整体生存(OS)方面取得了可观的增长。对于无法服用或耐受检查点抑制剂的患者以及对免疫疗法反应的患者,仍考虑口服TKI单一疗法。MRCC患者中的1个口腔TKI治疗序列的研究很少2,可能构成疾病进展的预后标志。3,4
数据不平衡,也称为数据的长尾分布,是数据驱动模型的重要挑战。在“意义上的歧义”(WSD)任务中,单词感官分布的长尾现象更为普遍,这使得很难有效地表示和识别长尾感官(LTSS)。因此,探索不严重依赖训练样本量的表示形式是对抗LTSS的重要方法。考虑到许多新状态,即叠加状态,可以从量子力学中的几个已知状态构建,因此超级态态提供了从从较小的样本量中学到的下较低表示中获得更准确的表示的可能性。受量子叠加状态的启发,提出了一种在希尔伯特空间中的表示方法,以赋予对大样本量的依赖性,从而使LTSS对抗。理论上证明了该方法的正确性,并在标准WSD评估框架下验证其有效性并获得最新性能。fur-hoverore,我们还测试了构建的LT和最新的跨语言数据集,并取得了令人鼓舞的结果。
从非侵入性大脑活动中解码语言引起了神经科学和自然语言处理研究人员越来越多的关注。由于脑记录的噪声性质,现有的研究将脑到词的解码简化为二元分类任务,即区分脑信号是其对应的单词还是错误的单词。然而,这种成对分类任务不能促进实用神经解码器的发展,原因有二。首先,它必须枚举测试集中的所有成对组合,因此预测大词汇表中的单词效率低下。其次,完美的成对解码器无法保证直接分类的性能。为了克服这些问题并进一步实现现实的神经解码器,我们提出了一种新颖的跨模态完形填空 (CMC) 任务,即以上下文为提示,预测神经图像中编码的目标单词。此外,为了完成这项任务,我们提出了一种利用预训练语言模型来预测目标词的通用方法。为了验证我们的方法,我们对来自两个脑成像数据集的 20 多名参与者进行了实验。我们的方法在所有参与者中平均实现了 28.91% 的 top-1 准确率和 54.19% 的 top-5 准确率,远远超过了几个基线。这一结果表明我们的模型可以作为 CMC 任务的最新基线。更重要的是,它证明了从大脑神经活动中解码大词汇表中的某个单词是可行的。
本研究的重点是利用脑电图信号为想象词提供一个简单、可扩展、多类的分类器。六个波斯语单词以及静默(或空闲状态)被选为输入类。这些单词可用于控制鼠标/机器人运动或填写简单的计算机表格。本研究的数据集是五名参与者在五次会话中收集的 10 条记录。每条记录重复了 20 次所有单词和静默。特征集由 1 至 32 Hz 频带中 19 个脑电图通道的归一化 1 Hz 分辨率频谱组成。二元 SVM 分类器组的多数规则用于确定特征集的相应类。通过蒙特卡洛交叉验证估计分类器的平均准确度和混淆矩阵。根据记录类间和类内样本的时间差异,定义了三种分类模式。在长时间模式下,即涉及整个数据库中单词的所有实例,单词-沉默的平均准确率约为 58%,单词-单词的平均准确率约为 60%,单词-单词-沉默的平均准确率约为 40%,七类分类(6 个单词+沉默)的平均准确率约为 32%。对于短时间模式,当仅使用相同记录的实例时,准确率分别为 96%、75%、79% 和 55%。最后,在混合时间分类中,每个类别的样本都来自不同的记录,平均准确率最高,约为 97%、97%、92% 和 62%。即使在长时间模式的最坏情况下,这些结果也明显优于随机结果,并且与该领域先前研究报告的最佳结果相当。
当您与糖基团研究所合作时,您将获得我们最先进的基础设施和世界领先的科学专业知识。糖胶菌免疫母体平台研究所依赖于使用我们具有广泛配备的糖碱分析设施,该设施提供了用于定制印刷幻灯片的微阵列制造套件,以使用表面质子膜共振来表征结合动力学。糖叠式分析设施支持确定蛋白质,整个真核和原核细胞,寄生虫和病毒的聚糖结合曲线,以确定这些结合相互作用的表征。
2022 年 4 月 21 日 — 对于眼药膏:前两天和接下来的五天,应每天三次将眼药膏薄薄地均匀地涂抹在患眼上。
摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
1. 电源板(底部)具有标称和冗余电源输入选择,并为 FPGA 提供五条主电源轨。其他电源轨由另外两块板上的调节器提供。使用德州仪器的航天级电源组件。2. 包含 Xilinx ® KU060 FPGA 的 FPGA 板(中间)。PCB 占用空间可容纳商用部分、工业部分或耐辐射部分。使用工业级 FPGA。FPGA 周围有六个 Elara 连接器,用于承载 SpaceFibre 电信号。每个连接器提供四条 SpaceFibre 通道。两个连接器各承载一个四通道端口,其他四个连接器各承载两个双通道端口。3. 配置和清理板(顶部),用于配置和监控 KU060 FPGA。配置来自 EEPROM 或通过 SpaceWire 接口。EEPROM 可以通过 SpaceWire 进行编程。
欧洲空间碳观测站 (SCARBO) 计划旨在评估温室气体 (GHG) 人为排放的监测,目标是以可承受的成本在一天之内重新访问地球。主要项目范围之一是混合星座的可行性研究,其中包括高精度参考任务(哥白尼 CO2M 或 CNES MicroCarb 任务)和搭载创新微型有效载荷的 24 颗小型卫星。小型卫星星座的关键温室气体传感器是 NanoCarb 概念,这是一种前所未有的千克级傅里叶变换成像光谱仪。我们在此报告了示范机载活动的一些初步实验结果。已经开发出一种用于测量 CO 2 和 CH 4 的低成本 2 波段原型,然后将其集成到 SAFIRE 的 Falcon-20 上,并与 SRON 的 SPEX 气溶胶传感器相结合。 2020 年 10 月,我们从法国图卢兹的弗朗卡萨尔机场飞越西班牙、意大利,然后飞往波兰。即使我们没有机会飞越发电厂,我们也已经获取了大量数据并正在处理中。在介绍仪器、任务和数据产品后,我们评估了数据质量和模型的可靠性。我们最终根据背景得出 CO 2 和 CH 4 柱的预期灵敏度分别约为 1.5-2.5% 和 5%。我们最终证明了 NanoCarb 的第一个 TRL5 原型的可操作性。
致谢................................................................................................................ iii 图表列表.................................................................................................................... vi 表格列表.................................................................................................................... vii 摘要................................................................................................................................... viii I.简介.......................................................................................................................1 II.文献综述................................................................................................................3 简介................................................................................................................................3 全球信息网格................................................................................................................3 全球网格........................................................................................................................4 部队模板概念................................................................................................................7 联合 STARS................................................................................................................10 Link-16 数据链.............................................................................................................11 Link-16 特性.............................................................................................................11 硬件架构.............................................................................................................13 时分多址协议.............................................................................................................16 传输访问模式............................................................................................................17 信息交换要求............................................................................................................18 原则............................................................................................................................20 总结............................................................................................................................23 III.方法论................................................................................................................24 问题定义.................................................................................................................24 目标和假设...............................................................................................................25 方法................................................................................................................25 系统边界.................................................................................................................26 系统服务.................................................................................................................27 性能指标.................................................................................................................27 参数.............................................................................................................................28 系统.............................................................................................................................28 工作负载.................................................................................................................30 因素.............................................................................................................................30 网络拓扑.................................................................................................................30 任务.............................................................................................................................31 评估技术.................................................................................................................32
