专门的云根据定义不支持跨多云环境的合规性控制,无法以其现有功能以可合理或统一的方式运行计算和安全服务,从而导致入门摩擦,安全风险和高TCO。“共同责任”合规模型给客户带来负担,以了解其整个合规环境,或者面临失败的审计或违规行为的后果。复杂的UI和脱节的产品为需要执行更专业合规任务的客户创造了陡峭的学习曲线,并且提供商锁定意味着添加其他云环境需要重复的努力来确保完全合规性就绪。此外,在满足数据本地化和居住要求
高清(HD)地图对于自动驾驶系统的安全至关重要。虽然现有技术启用了相机图像和板载传感器以生成对高精度地图的审核,但它们受到对单帧输入的依赖的限制。这种方法限制了它们在诸如OCClusions之类的复杂情况下的稳定性和性能,这主要是由于缺乏时间信息。此外,当应用于更广泛的感知范围时,它们的性能会降低。在本文中,我们介绍了流媒体,这是一种新颖的在线映射管道,擅长于视频的长期时间建模。流媒体网络采用了多点的关注和时间信息,可以使大型本地高清图的构建具有高稳定性,并进一步解决了现有方法的限制。此外,我们严重地使用了广泛使用的在线HD MAP构造基准和数据集,Argoverse2和Nuscenes,在现有评估协议中揭示了显着的偏见。我们根据地理跨度来启动基准,从而促进公平而精确的评估。实验结果验证了流媒体网络在所有设置中都显着超过现有方法,同时保持在线推断速度为14。2 fps。我们的代码可在https://github.com/yuantianyuan01/ streammapnet上使用。
内容表2介绍:Atropos健康3问题定义4研究问题5方法6准备药物来源术语6方法1:通过医疗保健特定的NLP模型7命名实体识别命名的实体识别7方法2:通过UMLS API通过UMLS API 7方法7方法7方法7方法3:umls api plus for gpti plus gpt-4人类访问量11的方法, Mapping Outcomes 11 Other Mapping Outcomes 11 Approach 1: Janus-Derived Maps 13 Janus AUROC Curves for Different Mapping Outcomes 14 Approach 2: UMLS API Alone 15 UMLS API Alone Correctness Metrics 15 Approach 3: Generative Terminology Mapping 17 Generative Terminology Mapping Results: 90% Reduction in Errors, 91% Coverage, 98% Reduced Cost 18 Generative Terminology Mapping (UMLS API Plus GPT-4)正确性指标18生成术语映射与地面真相结果和混乱矩阵18数据工程挑战19估计成本和比较20结论21生成术语映射生成研究级RXNorm映射药物数据,在21个警告和未来方向23附录23附录24
许多作者考虑了用于分析来自杂种种群数据的设计(例如Neimann-Sprensen和Robertson,1961年; Soller和Genizi,1978年; Geldermann等,1985; Weller等,1990)。这些方法的缺点是他们一次使用来自单个MARIRW的信息。没有标记将具有统一性的杂合性,因此对于任何给定的标记,有些父亲都会是纯合的,因此是非信息的。这会浪费信息,并在QTL的估计位置中引入偏差可能会有更大的问题。此外,提出的最小二乘方法不能单独估计任何检测到的QTL的位置和效果。最大似然(ML)方法(Weller,1986; Knott and Haley,1992a)可以估计这两种效果,但是通常仅使用单个标记(Weller,1986; Knott; Knott and Haley,1992a and B)估计,位置与标记相对(I.E.可以是它的任何一侧)。
所有包含的参与者都将Atria映射留在了这两种技术上。研究发现,在窦性节奏和冠状窦起搏期间,用双极电压映射(使用Carto 3D映射)映射的低电压区域仅部分重叠在持续的房颤中。在持续性房颤期间,来自全局非接触式映射的局部复合核心部分与低压区域共定位。作者建议,使用双极电压映射可能不是识别持续性房颤患者消融区域的最合适方法。在消融过程后,在16个月的随访期间,心房心律不齐在60%的参与者中没有复发。
视觉场景是自然组织的,在层次结构中,粗糙的语义递归由几个细节组成。探索这种视觉层次结构对于认识视觉元素的复杂关系至关重要,从而导致了全面的场景理解。在本文中,我们提出了一个视觉层次结构映射器(HI-MAPPER),这是一种增强对预训练的深神经网络(DNNS)结构化理解的新方法。hi-mapper通过1)通过概率密度的封装来调查视觉场景的层次结构组织; 2)学习双曲线空间中的分层关系,并具有新颖的分层对比损失。预定义的层次树通过层次结构分解和编码过程递归地与预训练的DNN的视觉特征相互作用,从而有效地识别了视觉层次结构并增强了对整个场景的识别。广泛的实验表明,Hi-Mapper显着增强了DNN的表示能力,从而改善了各种任务的性能,包括图像分类和密集的预测任务。代码可在https://github.com/kwonjunn01/hi-mapper上找到。
7KLV UHVHDUFK LV AND AND IN THE JLVDOLVDWLQ AND VILTERS VIQVRU\ H[SHUVLVWHQW AND AND AND LOVE PDSSSLVLEOs :KHURH KRZ LV LW IHOW LPDJLQHG LPDJHG" &DQ LW EH EVILIC PDSSHG frqvhtxhqwqwo \ who'&dq and and and and ylvdo odqjxdjo Infurlisionary。 prghov wr fkdqjh和shuvrq v olyhg h [shulhqfh“&kurqlq 3dlq 6 \ qgurp lv lv lv lv lvleoh xqsudvsdeoh lw dihfwv shrsoh shrsoh shrsoh shrsoh shrsoh shrsoh shrsoh shrsoh shrsoh shrsoh shrsoh hvvhqwldoo \ lw v d v d v v d vljqd and ysof and ysof and in vlj and in vlj and in vlj and in vlj and in vljq w and yus in vljq ryhu vhqvlwlvdwlrq ri wkh fhqwudo qhuyrxv v \ vwhp rffxuv $ 0d \ lq o lq 、1hxurlpdjdjdjdjvxdolvl whe和and and and and and and and and and and and and lq hylghqfhr frujdqlvdwlvdwlvdwlvuv和非常权利的权利ri ri iss olhv lq wr lqwhuxsw wkhvh vljqdov及其在此之前,与fdq uhdfd uhdfd vxe vxe vxe fruwlfd pruh frujqlwlyh odqjqllyh odqjjxdjjhg e eld wrrnwrrwhglrwhrrr wrrrr fruwlfd fruwlfd Ilqg rxw仅在[shulhqfh pdnlqj,prgho ri vrphwklqj eulqjlqj in [and and this and and and and and and and and and and and and and and and and and and and和fdw中,这是这个dooohyld ru glvr ru glvrvrpiruw suhvhqhqwklq ihq ihef vr vr vr vr vr vrr vrr vrr vrr vrr vr vr vrphwklqj eulqjlqj ihef lv fdvh fdvh fdvh lq p \ rxw rxw vwxfn dv lqvwhdg vrphwrjhwkkhu这个ioxlg fdq fdq fdvlvw zlwk wany wany wany wany wany wany
最近已经开发了一种用于确定双向DNA复制起源的物理位置的一般方法,并证明能够正确识别Simian病毒40复制的起源(L. vassilev和E. M. Johnson,Nucleic Acids,Res。17:7693-7705,1989)。该方法比以前报道的其他方法的优点是,它避免了使用代谢抑制剂的使用,细胞同步的需求以及对原点序列的多个副本的需求。将这种方法应用于含有未扩增的单拷贝二氢叶酸还原酶基因基因座的非扩增,单拷贝的卵巢凝胶的应用显示,DNA的复制在大约2.5千千公斤的起始区域开始,大约2.5个千千万酶,长期以来,长期以来,长期以来,大约17千千千万的基础与DHFR Gene的下降序列相结合,以前是早期复制的。这些结果证明了该映射方案用于识别复制的celular起源的实用性,并建议在正常和放大的DHFR基因座中使用相同的cedlular起源。
参考:1。Y. Nakamura等。 科学235:1616-1621(1987)2。 G.M. Lathrop等。 am。 J. Hum。 基因。 37:482-498(1985)3。 S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中Y. Nakamura等。科学235:1616-1621(1987)2。G.M. Lathrop等。 am。 J. Hum。 基因。 37:482-498(1985)3。 S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中G.M.Lathrop等。am。J. Hum。 基因。 37:482-498(1985)3。 S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中J. Hum。基因。37:482-498(1985)3。S.Povey,N.E。 Morton和S.L. Sherman,细胞遗传学。 细胞基因40:67-106(1985)4。 G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中S.Povey,N.E。Morton和S.L.Sherman,细胞遗传学。细胞基因40:67-106(1985)4。G.M. Lathrop等人,提交给人类基因映射研讨会的摘要9。 细胞遗传学。 细胞遗传学,在Press 中G.M.Lathrop等人,提交给人类基因映射研讨会的摘要9。细胞遗传学。细胞遗传学,在Press