资料来源:**赞比亚Seforall Action Action议程,2019年6月,GIZ,GIZ; Get.Invest Market Insights-Zambia:2019年6月的Solar PV和Hydro Minigrids,GIZ(链接);赞比亚的独立太阳能企业,2018年5月(链接) *赞比亚电气化地理空间模型,权力非洲,美国国际开发署,2018年,2018年
人体研究中的 ROI 分析 两位获得委员会认证的神经放射科医生(SO 和 YF,拥有 20 年经验)一致将 ROI 放置在 QSM 图像的中心切片上的以下每个区域中:GP、壳核、尾状核、黑质、红核、齿状核和脉络丛的低信号强度区域。然后使用开源软件(ImageJ,版本 1.50;美国国立卫生研究院,马里兰州贝塞斯达)将 ROI 的位置应用于来自同一患者或志愿者的 CT 图像。我们还根据 CT 和 MRI 扫描(包括 QSM、T1 加权、T2 加权和 T2* 加权图像)和临床信息在出血和钙化病变上放置了 ROI。当抗磁性病变被顺磁性区域包围时,优先选择内侧抗磁性(钙化)部分放置ROI。对于每个有病变的患者,最多选择3个病变放置ROI。计算每个ROI的平均CT衰减值和平均QSM值(磁化率)。当平均QSM值为正值(顺磁性ROI)时,还计算最大和第95百分位CT衰减值以及最大和第95百分位QSM值,以更好地理解CT衰减值和磁化率的特征,这在表观扩散系数的分析中通常采用(18)。对于平均QSM值为负值的ROI(抗磁性ROI),计算最大和第95百分位CT衰减值以及最小和第5百分位QSM值。通过以下对 CT 衰减值与磁化率之间的相关性进行评估:顺磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最大 QSM 值、第 95 百分位 CT 衰减值与第 95 百分位 QSM 值;抗磁性 ROI 的平均 CT 衰减值与平均 QSM 值、最大 CT 衰减值与最小 QSM 值、第 95 百分位 CT 衰减值与第 5 百分位 QSM 值。
摘要。本文介绍了人工智能 (AI) 计算系统的映射概念。将人类神经生理学中的“小人”概念扩展到 AI 系统。假设 AI 系统的行为类似于自然动物大脑中的小柱或神经节,包括一层不同的(输入)神经元、许多相互连接的处理单元和一层不同的(输出)神经元或器官。本研究的目的是确定当智能系统受到某些刺激时,对每个不同的神经元的刺激与每个不同的器官的相应反应之间的相关性。为了阐明一般概念,以一个小型三层前馈神经网络 (NN) 为简单示例,并构建了一个 NNculus。这一概念有两个重要应用:一是自主机器人的质量控制,可以构建 NN 或 AI 集群来评估其性能;二是使用人工 NN 通过硬件或数值模拟研究人脑微柱内层的拓扑组织。
我们涵盖了数字技术经济生态系统(DGTES)映射中确定的与政策相关的数字领域(DAS)。das设置数字生态系统技术界限并解决策略相关和前瞻性域,包括:高级计算,HPC;人工智能(AI);云计算;网络安全;分布式分类帐技术(DLT);动态数据;电子商务;扩展现实;物联网(IoT);电力电子;量子技术;机器人技术;垂直行业(专注于eHealth,技能,公共服务等应用程序); 3D打印; 5G和6G。
房屋小鼠(Mus Musculus)是一个关键的生物医学研究模型,也是疾病传播的重要媒介。在野外,房屋小鼠也是一种生态破坏性的入侵物种,其活动与重大的经济和农业损害和成本有关。尽管房屋小鼠在这些不同的情况下的重要性,但其地理分布的程度尚未得到充分理解。房屋小鼠是人类的份额,但仍然对其流行环境敏感,表明人类定居的范围不能用作可靠的代理。Existing range maps for Mus musculus are based on minimum convex hulls informed by potentially biased sampling and do not 1) fully integrate large, digitized data documenting species occurrences, 2) provide insight into the likely species distribution in under-sampled regions, and 3) delineate internal structures of the range, including barriers to dispersal or unsuitable internal habitat.因此,我们对该物种占据的生物气候耐受性和环境信封一无所知。为了解决这些未知数,我们利用公开可用的鼠标采样和生物多样性数据提供了mus musculus的更新范围图,并定义了房屋鼠标分布的环境限制。使用来自公共档案的遗传数据,我们还对新更新范围内的房屋小鼠的遗传多样性进行了建模。使用这些数据,我们可视化全球遗传多样性趋势,并确认Mus Musculus的祖先起源于现代巴基斯坦和印度西北部占领的印度次大陆地区。综上所述,我们的努力重点介绍了预计房屋小鼠处于其环境耐受性限制的领域,包括未来抽样工作的地区,可能会以独特的适应性特征揭示小鼠。
1,5二取代的双环[2.1.1]己烷是桥接的脚手架,具有明确定义的出口载体,它们在药物化学中变得越来越流行,因为它们已饱和,饱和的Ortho-Ortho-Ortho替代苯基环。在这里,我们开发了第一个基于刘易斯酸催化的[2+2]光载量载体的对映射催化策略,以获取这些基序作为对映基型支架,从而为其在多种药物类似物中掺入的有效方法提供了有效的方法。在癌细胞活力研究中已经评估了含生物酶的药物,观察到在某些情况下,两种对映体的生物学活性高度不同。这表明,对药物模拟的绝对构型和三维性的控制对其生物活性具有很大的影响,这突出了对bicyclo [2.1.1]己烷核心建造的立体选择方法的需求。
本文介绍了一种自主机器人系统,该系统采用LiDAR(光检测和范围)技术,该技术由Raspberry Pi 4单板计算机驱动,并与机器人操作系统2(ROS2)无缝集成,以实现2D映射和同时本地化和绘图(SLAM)在印地环境中。Raspberry Pi 4用作板载计算机,负责处理LIDAR数据,传感器融合,控制算法以及与外部设备的通信。ROS2充当中间件,确保无缝使用传感器,控制算法和可视化工具。实施SLAM算法是该项目的重要方面,允许机器人同时确定其在该地图中的位置,允许机器人构建复杂的环境2D地图。此信息对于在动态室内环境中的安全有效导航来说是必不可少的。
对生产和工作条件的无知,结合没有定期和结构化的上游供应链水平监测,增加了可持续性风险,特别是违反人权和劳动力标准。在这种情况下,违规行为已被“编织”到该产品的最终处理时。公司保证产品制造发生在尊重人类和劳动权利的环境中,并且对周围社区没有负面影响 - 他们的领导者必须检查上游供应链。他们应该从对产品的主要原材料进行审查,逐渐扩展到其他原材料和所使用的组件。
佛蒙特州的《全球变暖解决方案法》(GWSA)将韧性定义为“个人,社区以及自然和建筑系统的能力,以承受和从气候事件,趋势和破坏中恢复”(No.153,2020)。Vermont的全面能源计划(CEP)解释说,在日常操作中,受管辖的可靠性是“避免'避免'负载损失'(或持续时间),数量和持续时间,数量和持续时间,以及在指定的时间内关注可靠性的可靠性,并在指定的一段时间内均与特定的ART范围内的特定定义级别的持续划分,而不是固定的范围,而不是拟议定义的特定范围。 “牙齿”(VT PSD,2022)。CEP继续强调电力研究所的三方面弹性计划方法,包括预防,生存能力和恢复,并在适应性和气候变化适应之间建立联系(VT PSD,2022年)。
这项研究绘制了Kutai Kartanegara Regency中地热的潜力,以支持使用二进制循环技术的净能量过渡。使用遥感方法,Landsat 8油/TIRS卫星图像分析被计算出归一化差异植被指数(NDVI)和地表温度(LST),并使用地质图进行故障识别。通过分析层次结构过程(AHP)方法分析了此数据,以确定潜在领域。结果表明,植被密度较低且表面温度较高的区域,尤其是在活动断层周围,具有显着的地热潜力。Tamapole村和Muara Jawa Ulu被确定为建造基于二元循环的地热电厂的最佳位置。基于这项研究,得出的结论是,该地区二进制周期技术的实施有可能通过提供环保地热能来支持首都的可持续发展目标。关键字:NVDI,LST,AHP,地热,Kutai Kartanegara,二进制周期。