1 马切拉塔医院肿瘤科,Via Santa Lucia 2, 62100 马切拉塔,意大利 2 拉蒙尼卡哈尔医院肿瘤内科,28029 马德里,西班牙 3 卡梅里诺大学制药与健康产品科学学院,62032 卡梅里诺,意大利 4 科罗拉多大学安舒茨医学院,奥罗拉,CO 80045,美国 5 博洛尼亚大学 IRCCS 医院肿瘤内科,Via Albertoni-15, 40138 博洛尼亚,意大利 6 帕尔马大学医学与外科系,43121 帕尔马,意大利 7 罗斯班克肿瘤内科中心,129 Oxford Road, Saxonwold,约翰内斯堡 2196,南非 8 比勒陀利亚大学健康科学学院免疫学系,Doctor Savage Road 和 Bophelo Road 拐角处,比勒陀利亚 0002,南非 9 马德里 MD 安德森癌症中心肿瘤内科,28033 马德里,西班牙 * 通讯地址:sebabuti@libero.it 或 sebastiano.buti@unipr.it;电话:+39-0521-702314;传真:+39-0521-995448
机载花粉是全球最重要的空气过敏剂。由于气候变化,花粉季节性和丰度正在发生重大改变,这引起了基本问题:花粉暴露何时和多少增加?为了回答这个问题,我们采用了多分辨率的研究设计,从大约每年到年度规模,研究了空中花粉的多样性,丰度和时间出现。使用7天记录的Hirst型体积陷阱,在2015年至2017年期间进行了空气传播的花粉浓度。监控是在地面上进行的,我们主要是上下班和居住的地方,在“金标准”屋顶级别(地面高12 m),分辨率:a)每天bi-hourly,b)。评估了所有分类单元的生物多样性和相对丰度,并开发了第一个花粉季节日历以及昼夜节律日历,用于德国奥格斯堡。确定了40多种花粉类型,其中13种是最丰富的(每个相对丰度> 0.5%,总计91.8%)。生物多样性在高度之间没有任何明显的差异,尿布科,槟榔和豆豆的花粉代表了始终超过一半的区域大气生物多样性。在屋顶级别的花粉丰度通常看起来更高,尤其是对于betula,picea和quercus。主要的花粉季节从3月至10月延长,最高峰将于4月至5月。在屋顶级别,大多数分类单元的花粉季节都早些时候,整个季节更长。时花粉在一天中,在中午至下午观察到较高的花粉浓度(荨麻教,肺科,plantago,大多数是地面上的分类单元)或傍晚到清晨,经常使用多模式的昼夜模式(betula,fraxinus,fraxinus,fraxinus,大多数是屋顶级别的分类)。我们的发现表明,应深入重新考虑地面和“金标准”屋顶级花粉测量之间的丰度和时间分布模式的概括。
包括神经蛋白浮动的抽象炎症被认为是保护性反应,可用于修复,再生和恢复中枢神经系统中受损的组织。由于慢性应激,自由基的年龄相关,亚临床感染或其他因素导致生存率降低和神经元死亡增加,持续的肿瘤肿瘤。 昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。 大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。 始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。 糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。 被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。 最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。持续的肿瘤肿瘤。昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF- κ B signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroin fl ammation-神经变性。
o 翼展:18 米 o 长度:8.50 米 o 重量:1.2 吨 续航时间:14 小时 SAR/GMTI 雷达:探测移动目标 EO/IR/激光:识别
*. 作者贡献相同摘要背景:丘脑底局部场电位 (LFP) 中的 β 波段活动与帕金森病 (PD) 症状严重程度相关,并且是自适应深部脑刺激 (aDBS) 的治疗目标和反馈信号。虽然 PD 患者临床相关的 β 波动在较短的时间尺度上和临床中得到了很好的描述,但在临床环境之外,尚不清楚 β 活动如何围绕昼夜周期演变。目的:表征接受连续高频 DBS 的 PD 患者 β 幅度的昼夜波动。方法:我们在高频 DBS 期间对植入 Percept DBS 设备的 PD 患者进行了丘脑底 β 功率的慢性记录(34±13 天),并分析了其昼夜特性。为了研究非频率特定效应和伪影的影响,我们比较了 β 与对侧 θ 幅度,并记录了各种运动过程中的 LFP。结果:β 功率具有很强的 24 小时周期性,一天中的时间解释了所有长期 β 功率记录中 41±9% 的方差(所有患者的 p<0.001)。对于所有患者,β 活动在白天较高,在夜间降低。β 活动不能完全由 theta 活动解释,并且可以显示独立的昼夜调节。运动伪影影响记录的 LFP,影响频带功率估计,并且可能导致某些患者的昼夜模式。结论:aDBS 需要适应 β 幅度的昼夜波动,以防止刺激不理想,尤其是在夜间。需要仔细筛选和/或减轻运动伪影,以确保信号适合自适应刺激或神经生理学研究。利益冲突声明 JJvR、LKF、JLB、VM 和 AS 无需声明。 AAK 声明她是波士顿科学公司和美敦力公司的顾问委员会成员,并曾获得波士顿科学公司、美敦力公司、Teva 公司和益普生公司的报酬。TD 拥有 Bioinduction Ltd 的股份,是 Cortec Neuro 和 Synchron 公司的顾问,并曾获得美敦力公司的报酬。
估计此信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查此信息收集的时间。请将有关此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1.报告日期 (DD-MM-YYYY) 2021 年 10 月 21 日至
内在的昼夜节律钟会产生生理和行为的昼夜节律,从而使我们能够适应由地球自转而产生的循环环境线索。昼夜节律失调会对不同生物的适应性和健康产生有害影响。前往火星和在火星上进行的星际旅行的环境线索与地球上的环境线索截然不同。这些差异带来了许多适应性挑战,包括对人类昼夜节律的挑战。因此,使昼夜节律适应火星环境是未来登陆和居住在火星的先决条件。在这里,我们回顾了与火星环境对昼夜节律的影响相关的研究进展,并提出了进一步研究的方向和改善昼夜节律钟适应未来火星任务的潜在策略。
大多数人类是昼行性的,这意味着他们通常白天醒着,晚上睡觉。然而,许多其他动物并非如此,它们喜欢夜生活,全天休息。那么大脑如何决定我们是夜行性还是昼行性呢?许多生理过程,如清醒或睡眠,都与白天和黑夜的时间同步。这些活动由称为昼夜节律钟的分子振荡器调节,它由基因转录和蛋白质翻译的正反馈和负反馈回路组成,使过程以〜24 小时的周期发生。就像管弦乐队中的乐器一样,这些遍布全身的时钟发出的“滴答声”必须协调一致,以协调不同器官的活动。对于哺乳动物来说,这首交响曲的指挥是“主昼夜节律时钟”,它位于视交叉上核 (SCN),这是大脑下丘脑区域内约 20,000 个神经元组成的一个集群。SCN 中的每个神经元都会根据昼夜循环调整其电活动,最终产生身体遵循的节律输入(Reppert 和 Weaver,2002 年)。
感谢我们感谢Trieu Mai,Stuart Cohen,Scott Nicholson,Dan Steinberg,Dan Bilello,Zachary Eldredge,Daniel Sodano和几位匿名审稿人,以提供有关此报告的投入和反馈。这项工作由EERE计划,太阳能技术办公室,水力技术办公室和风能技术办公室共同资助,根据合同编号DE-AC36-08GO28308。所有错误和遗漏都是作者的唯一责任。本文中表达的观点不一定代表能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。