涂敷粘合促进剂并旋转干燥后,将光 BCB 膜直接旋涂到基材上。用于沉积树脂的精确条件(例如旋转速度)将根据所需的最终膜厚度和所使用的树脂配方而有所不同。表 6 显示了 Cyclotene ™ 4022-35、4024-40 和 4026-46 树脂在软烘烤(参见第 4 节)后的厚度与旋转速度的关系以及曝光、显影和固化后的最终厚度。最终固化膜中的大部分膜厚度损失发生在显影步骤中。固化步骤(除去除残留显影剂溶剂外)中的膜厚度损失小于 5%。表 6 中的厚度是使用开放式旋转碗测定的。如果使用有盖或封闭的杯式涂布机,厚度将有所不同,并且取决于旋转时间和旋转速度。图 3 显示了使用开放式和封闭式碗配置的膜厚度比较。
伽马时间曲线 226 伽马随波长的变化 227 拍摄对象在特性曲线上的定位 227 平均梯度和 ¯ G 228 对比度指数 228 显影变化对底片的影响 228 曝光变化对底片的影响 229 曝光宽容度 230 相纸的响应曲线 231 最大黑色 231 相纸的曝光范围 232 打印曲线随乳剂类型的变化 232 打印曲线随显影的变化 233 打印中的要求 234 相纸对比度 234 高对比度拍摄对象的问题 235 色调再现 236 互易律失效 238 感光度测定实践 239 感光度计 240 密度计 241 基本感光度测定 244 数码相机的感光度测定 245
独特功能 – 高耐湿蚀刻和干蚀刻性 – 光刻胶图案具有良好的热稳定性 – 可调图案轮廓:垂直至底切 – 水性碱性显影 – 易于去除 – 提供多种粘度的光刻胶
ma-P 1200 是正性光刻胶系列,专为微电子和微系统技术而设计。这些光刻胶具有多种粘度,一次旋涂即可获得 0.3 – 40 μm 的薄膜厚度。非常适合用作蚀刻掩模,具有较高的干湿蚀刻耐受性 - 宽带、g-、h- 和 i-line 曝光 - 在湿蚀刻工艺和酸性和碱性电镀槽中具有非常好的图案稳定性 - 在干蚀刻工艺(例如 CHF 3 、CF 4 、SF 6)中具有高度稳定性 - 可获得良好的光刻胶图案热稳定性 - 水性碱性显影
目的:每个个体的唇印都是独一无二的。唇印作为确定身份的生物特征记录之一的潜力已得到广泛认可。然而,通过比较已形成的潜在唇印来研究其可靠性的研究却很少。本研究通过比较已注册的唇印和瓷杯上已形成的潜在唇印,重点研究唇印在个人身份识别中的可靠性。材料和方法:包括 102 名年龄在 18-30 岁之间的受试者(52 名男性和 50 名女性)的样本。在标准瓷杯上制作潜在和叠加的唇印。用指纹粉显影潜在指纹。然后,将涂有唇膏的唇印记录在透明胶带上。使用数码相机用标准尺拍摄已显影的潜唇印和已记录的唇印,并进行比较。唇印采用 Tsuchihashi 提出的方案进行分类。使用 Pearson 卡方检验 (IBM SPSS 版本 20) 进行统计分析,p 值为 0.05。结果:无论性别如何,唇印都是独一无二的。他们对数字图片比较的解释证实了独特模式的存在以及提取类似于指纹的特征的可能性。III 型是研究组中观察到的最常见的模式。结论:我们得出结论,由于唇印的独特性,唇印作为生物特征记录具有高度可靠性。唇印已证明有足够的证据表明是故意记录的,并且已开发的潜印进行了比较,这可以作为最简单、最容易的比较方法之一。然而,唇印的真实性尚处于初步阶段,需要更系统的研究才能被法律纠纷接受。临床意义:研究结果可以加强唇印作为识别工具的可靠性,并讨论了唇印应用的未来可能性。关键词:生物识别、指纹、法医牙科学、唇印。世界牙科杂志 (2019):10.5005/jp-journals-10015-1629
简介:课程概述。能源资源的分类,世界和印度基本的太阳 - 地球关系:定义。天体球,高度 - 齐路,偏斜角度和偏斜 - 右上角坐标系统,用于寻找太阳的位置,天体三角形和太阳的坐标。格林威治的平均时间,印度标准时间,当地太阳能时间,阳光升起和日光照射时间和日期。数值问题太阳辐射:太阳辐射的性质,太阳辐射谱,太阳常数,水平表面上的地球外辐射,太阳辐射的衰减,梁,弥散和全球辐射的衰减。全局,弥漫性和梁辐射的测量。太阳辐射的预测; Angstrom模型,页面模型,Hottel的模型,Liu和Jordan模型等。在倾斜的表面,入射角,说明性问题上的显影
五片晶圆以 4000RPM 的旋转速度手工涂覆 AZ 1512。将晶圆在 100C 的加热板上预烘烤 45 秒。使用 Nanospec 测量 1.lum 厚的层。曝光量以 15m3/cm2 为增量从 7OmJ/cm2 变化到 130m3/cm2。移动 ETM 掩模,使掩模上的箭头与中间行中心单元的标记对齐。在 AZ312 MIF(1:1.2)显影剂中手工显影 1mm。用载物台测微计测量 3.Oum 线/间距对。绘制线宽与曝光量的关系图。确定与实际值 3.Oum 相差 0.lum 是可以接受的。记录产生可接受线宽的最大和最小曝光量。使用以下公式计算曝光宽容度:
皮肤自显影。对 6 例疱疹的整个疱顶表皮和表皮细胞悬液进行了放射自显影分析。将两个完整的表皮和分离成细胞悬浮液的另外 22 个表皮在 1 ml 含有 2 µCi ["H]TdR 的 Hanks 溶液中在 37°C 下孵育 60 分钟。用 Hanks 溶液清洗两次后,将水泡表皮固定在 4% 福尔马林中,进行处理,并切成 4 µm 的切片。从表皮细胞悬浮液中制成细胞离心制剂。用剥离膜(Kodak AR-IO)覆盖制剂,暴露 7 天,并用 Harris 苏木精染色。通过计数每个样本中的 5 000 个细胞并将计数表示为标记细胞与所有未标记表皮细胞 XI 00 的比例来确定表皮细胞的标记指数。
描述 - 新的 SME 添加到 ECCN 3B001 和 3B002 3B001.a.4 控制用于硅 (Si)、碳掺杂硅、硅锗 (SiGe) 或碳掺杂 SiGe 外延生长的设备 3B001.d 沉积设备 3B001.f 光刻设备 3B001.k 控制用于“EUV”掩模版多层反射器的离子束沉积或物理气相沉积的设备。3B001.l 控制“EUV”薄膜。3B001.m 控制用于制造“EUV”薄膜的设备。3B001.n 控制用于涂覆、沉积、烘烤或显影为“EUV”光刻配制的光刻胶的设备。3B001.o 使用指定参数控制半导体晶圆制造退火设备。 3B001.p 对三种半导体晶圆制造清洗及移除设备的控制