1 清华大学生命科学学院、膜生物学国家重点实验室、北京生物结构前沿研究中心、IDG/麦戈文脑研究所、新基石科学实验室,北京 100084。
由于缺乏全面的数据集和缺陷类型的多样性,自动检测增材制造的 Ti6Al4V 材料中的微观结构缺陷面临巨大挑战。本研究介绍了一种应对这些挑战的新方法,即开发专门针对扫描电子显微镜 (SEM) 图像的微观结构缺陷数据集 (MDD)。我们使用此数据集训练和评估了多个 YOLOv8 模型(YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l 和 YOLOv8x),以评估它们在检测各种缺陷方面的有效性。主要结果表明,YOLOv8m 在精度和召回率之间实现了平衡,使其适用于可靠地识别各种缺陷类型中的缺陷。另一方面,YOLOv8s 在效率和速度方面表现出色,尤其是在检测“孔隙”缺陷方面。该研究还强调了 YOLOv8n 在检测特定缺陷类型方面的局限性以及与 YOLOv8l 和 YOLOv8x 相关的计算挑战。我们的方法和发现有助于科学地理解增材制造中的自动缺陷检测。MDD 的开发和 YOLOv8 模型的比较评估通过提供检测微结构缺陷的强大框架来推进知识水平。未来的研究应侧重于扩展数据集和探索先进的 AI 技术,以提高检测准确性和模型泛化能力。
摘要。MICROSCOPE 空间实验旨在以比以往更高的精度测试等效原理。其原理是比较嵌入在绕地球运行的卫星上的空间加速度计中的同心测试质量的自由落体。由于所谓的无阻力系统,非重力对卫星运动的影响大大降低。MICROSCOPE 从 2017 年 4 月运行到 2019 年 10 月。对第一组测量的分析使等效原理测试的精度提高了大约一个数量级。在 10-14 的水平上,铂和钛中的一对质量没有检测到任何违规行为。MICROSCOPE 由 ONERA 和 OCA 作为科学领导者提出,由 CNES 作为项目经理开发,是第一个致力于低地球轨道基础物理的欧洲太空任务。ZARM、PTB 和 ESA 是欧洲的主要贡献者。
人类生物学及其复杂系统的复杂性具有推进人类健康,疾病治疗和科学发现的巨大潜力。但是,研究生物相互作用的传统手动方法通常受到生物学数据的含量和复杂性的限制。人工智能(AI)具有分析大量数据集的经过验证的能力,为解决这些挑战提供了一种变革性的方法。本文探讨了生命科学中AI和显微镜的交集,强调了它们的潜在应用和相关挑战。我们提供了有关各种生物系统如何从AI中受益的详细回顾,突出了该域独有的数据类型和标记要求的类型。特别注意显微镜数据,探索处理和解释此信息所需的特定AI技术。通过解决数据异质性和注释稀缺等挑战,我们概述了该领域的潜在解决方案和新兴趋势。主要从AI的角度撰写,本文旨在作为在AI,显微镜和生物学交集的研究人员的宝贵资源。它总结了当前的进步,关键的见解和开放问题,从而促进了鼓励跨学科合作的理解。通过提供对该领域的全面而简洁的综合,本文渴望催化创新,促进跨学科的参与,并加速在生命科学研究中采用AI。
4 Helmholtz AI,Helmholtz Munich,Neuherberg,德国,德国14 5 MORGRIDGE研究所,美国威斯康星州麦迪逊,美国威斯康星州麦迪逊15 6 6 6 Helmholtz Center,Helmholtz Center,Neuerherg,德国Neuherberg,德国16 7研究院 University, 17 Munich, Germany 18 8 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 19 9 Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, 20 IN 47907, USA 21 10 School of Medicine, Koç University, İstanbul, Turkey 22 11 Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany 23 12 Computer美国巴尔的摩的约翰·霍普金斯大学(John Hopkins University),美国巴尔的摩24 13 AI研究所,赫尔姆霍尔茨·慕尼黑,德国诺伊尔伯格,德国诺伊尔伯格,25 14卓越群“多尺度生物影像学:从分子机器:从分子机器到可激发的细胞网络到可激发的细胞网络”
类风湿性关节炎是最常见的炎症性关节疾病,仅奥地利就有超过 60,000 人患有该病,女性患该病的可能性是男性的三倍。尽管过去几十年来治疗方面的进步已导致开发出具有不同作用机制的多种药物,但由于缺乏帮助找到正确治疗方法的工具,许多患者仍然无法实现临床缓解,导致症状得不到充分控制。临床医生只能采用“反复试验”的治疗方法,即一种药物接一种药物地进行测试。虽然存在一些生物标志物来帮助预测治疗结果,但它们尚不适合常规临床使用或需要侵入性手术。在长期合作中,由 CeMM 和维也纳医科大学的 Giulio Superti-Furga 领导的团队首次测试了一种精准医疗方法,该方法可以为类风湿性关节炎和其他可能的自身免疫性疾病提供更有针对性和更准确的治疗方法。该研究结果发表在 EBioMedicine(DOI:10.1016/j.ebiom.2024.105522)上,代表了该领域的重大进步。细胞类型影响疾病和治疗该方法基于尖端显微镜技术,能够以完全自动化的方式生成和分析大量图像数据。它由 CeMM 以“药理学”1,2 的名义开发,能够直接测量药物对各种单个免疫细胞的影响——这项任务如果使用传统分子生物学技术以这种规模完成,将过于耗费人力。此外,它允许
摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
1 维新大学研究与发展研究所,越南岘港 550000 2 魁北克大学三河市分校(UQTR)化学、生物化学和物理系,魁北克省三河市 G8Z 4M3,加拿大; payman.ghassemi3@gmail.com 3 土伦大学 MAPIEM 实验室(EA 4323),聚合物材料海洋环境界面,CEDEX 9,83041 土伦,法国; pascal.carriere@univ-tln.fr 4 萨斯喀彻温大学化学与生物工程系,萨斯喀彻温省萨斯卡通 S7N 5A2,加拿大; sonil.nanda@usask.ca 5 ENSCR—雷恩化学科学研究所 (ISCR)—UMR CNRS 6226,雷恩大学,35700 雷恩,法国; aymen.assadi@ensc-rennes.fr 6 阮达成大学环境与食品工程学院,300A 阮达成,第 4 区,胡志明市 755414,越南; nguyensyduc@gmail.com 7 京畿大学环境能源工程系,水原 16227,韩国 * 通讯地址:Phuong.nguyen-tri@uqtr.ca;电话:+ 819-376-5011(分机 4505)
细化参数 闭合构象 开放构象 地图分辨率(掩蔽) 3.54Å 4.02Å 地图分辨率(未掩蔽) 3.55Å 4.03Å FSC(模型)(掩蔽)= 0.143 2.28Å 3.35Å 相关系数(掩蔽) 0.77 0.60 Ramachandran 允许值 100% 98.53% 表 2 PHENIX 40 中实空间细化的闭合和开放构象的冷冻电镜统计数据。447
摘要:提出了一种用于编码对相干显微镜中成像样品的复杂幅度场进行编码的通用方法,其中不需要对两个干涉梁中的任何一个限制。因此,成像梁通常可以与任何其他复杂振幅分布,尤其是考虑两个正交方向的任何其他复合幅度分布,尤其是自身的相干和移位版本。复杂的场值是通过一种新型基于Cepstrum的算法(称为空间移动Cepstrum(SSC))基于对象场频谱的互相关项的加权减法而被称为空间转移的CEPSTRUM(SSC),此外,除了从Holograper and Interviental的组合中,一项均具有一定的信息(一个范围)(一个范围)(一个范围)(一个范围)(一个范围),该效率是一份逐步播放的一部分(一个)。干涉梁移动1像素。结果,由于检索了该过程中涉及的三个干涉场的复杂幅度,因此视野的三倍。对此方法的概念验证验证,称为基于CEPSTRUM的干涉显微镜(CIM),考虑了考虑使用外轴全息构型,用于检索在紧凑的QUASIC-CASI-COMON-COMON-COMPOCT QUASIC-COMPONT QUASIC-COMPONT COMPLITACH PATER仪中的交叉相关性。包括不同类型的相样品的实验结果(包括分步校准和演示的分辨率测试目标以及固定的生物样本)。