仪器会产生扩大的小物体图像,从而使观察者在Ascale时方便地进行检查和分析时非常近距离观察。显微镜的放大功率是对所检查的对象的数量的表达,似乎是放大的,并且是无尺度比率。
无法控制的树突生长与不均匀的反应环境密切相关。但是,缺乏探测局部电化学环境(LEE)的理解和分析方法。在这里,我们研究了LEE的影响,包括局部离子浓度,电流密度和电势,对金属电镀/剥离动力学和树突最小化的影响。开发了一种新型的原位三维(3D)显微镜,以对3D Zn-MN阳极上的Zn Plating/剥离过程的形态动力学和沉积速率进行成像。使用多平台重建框架创建了高质量的3D形态图。使用原位3D显微镜,我们直接成像反应期间的电极形态变化,并在不同时间点获得了Zn沉积速率图。我们发现反应动力学与Lee和电极形态高度相关。为了进一步量化Lee效应,采用了数字双胞胎技术,使我们能够准确计算电化学环境,例如局部离子浓度,电流密度和电势,这是无法直接从实验中测量的。发现3D电极表面的曲率将确定LEE并显着影响反应动力学。这为我们提供了一种新的策略,可以通过设计和优化电极的3D几何形状来控制Lee,以最大程度地减少树突形成。
1。F. Bray等。,2018年全球癌症统计:Globocan在185个国家 /地区的36个癌症全球发病率和死亡率的估计。 CA:临床医生68,394-424(2018)的癌症杂志。 2。 E. Francini等。 ,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。 前列腺癌和前列腺疾病22,420-427(2019)。 3。 M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。,2018年全球癌症统计:Globocan在185个国家 /地区的36个癌症全球发病率和死亡率的估计。CA:临床医生68,394-424(2018)的癌症杂志。 2。 E. Francini等。 ,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。 前列腺癌和前列腺疾病22,420-427(2019)。 3。 M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。CA:临床医生68,394-424(2018)的癌症杂志。2。E. Francini等。 ,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。 前列腺癌和前列腺疾病22,420-427(2019)。 3。 M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。E. Francini等。,新系统性疗法对基于医院的注册表中耐cast割前列腺癌患者的总体生存的影响。前列腺癌和前列腺疾病22,420-427(2019)。3。M. de Santis等。 ,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。 治疗的进步(2024)。 4。 S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。M. de Santis等。,niraparib加上阿比罗酮乙酸酯酸盐和其他一线聚ADP-核糖聚合酶抑制剂治疗方案对BRCA1/2突变阳性转移性抗性castration-抗性前列腺癌的患者的可行性。治疗的进步(2024)。4。S. T. Tagawa等。 ,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。 临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。 5。 D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。 癌症82,2256-2261(1998)。 6。 D. A. Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。 7。 O. Sartor等。 8。 9。S. T. Tagawa等。,前列腺特异性膜抗原靶向α发射极通过抗体递送,用于转移性cast割 - 耐抑制前列腺癌:(225)AC-J591的I期I剂量降低研究。临床肿瘤学杂志:美国临床肿瘤学会官方杂志42,842-851(2024)。5。D. G. Bostwick,A。Pacelli,M。Blute,P。Roche,G。P。Murphy,前列腺上皮内肿瘤和腺癌中的前列腺特异性膜抗原表达:一项研究184例。癌症82,2256-2261(1998)。6。D. A.Silver,I。Pellicer,W。R. Fair,W。D. Heston,C。Cordon-Cardo,前列腺特异性膜抗原表达在正常和恶性的人体组织中。7。O. Sartor等。8。9。临床癌症研究:美国癌症研究协会官方杂志3,81-85(1997)。,lutetium-177-PSMA-617,用于转移性cast割前列腺癌。新英格兰医学杂志385,1091-1103(2021)。M. S. Hofman等。 ,[(177)lu-psma-617与Cabazitaxel在转移性cast割的前列腺癌(治疗)患者中:一项随机,开放标签,第2期试验。 柳叶刀(英国伦敦)397,797-804(2021)。 J.-C。 Olivo-Marin,使用多尺度产品在生物图像中提取斑点。 模式识别35,1989-1996(2002)。 10。 V. Caselles,R。Kimmel,G。Sapiro,Geodesic Active Contours。 国际计算机视觉杂志22,61-79(1997)。 11。 F. Meyer,地形距离和分水岭。 信号处理38,113-125(1994)。M. S. Hofman等。,[(177)lu-psma-617与Cabazitaxel在转移性cast割的前列腺癌(治疗)患者中:一项随机,开放标签,第2期试验。柳叶刀(英国伦敦)397,797-804(2021)。J.-C。 Olivo-Marin,使用多尺度产品在生物图像中提取斑点。 模式识别35,1989-1996(2002)。 10。 V. Caselles,R。Kimmel,G。Sapiro,Geodesic Active Contours。 国际计算机视觉杂志22,61-79(1997)。 11。 F. Meyer,地形距离和分水岭。 信号处理38,113-125(1994)。J.-C。 Olivo-Marin,使用多尺度产品在生物图像中提取斑点。模式识别35,1989-1996(2002)。10。V. Caselles,R。Kimmel,G。Sapiro,Geodesic Active Contours。国际计算机视觉杂志22,61-79(1997)。11。F. Meyer,地形距离和分水岭。信号处理38,113-125(1994)。
摘要:(2 s) - eriodictyol(ERD)是一种在柑橘类水果,蔬菜和具有神经保护性,心脏保护性,抗糖尿病和抗肥胖作用的不良药物植物中广泛发现的avonoid。但是,ERD的微生物合成受复杂的代谢途径的限制,并且通常导致生产较低。在这里,我们通过调节ERD合成途径的代谢来设计酿酒酵母。结果表明,ERD滴度有效增加,中间代谢物水平降低。首先,我们成功地重建了酿酒酵母中p-奶油酸的从头合成途径,并使用启动子工程和终端工程进行了代谢途径,用于高级生产(2 s) - 纳林宁。随后,通过从Tricyrtis hirta引入Thf3'H基因来实现ERD的合成。最后,通过乘以Thf3'h基因的拷贝数,ERD的产生进一步增加,达到132.08 mg l -1。我们的工作强调了调节代谢平衡以在微生物细胞工厂生产天然产物的重要性。
频率调制 (FM)。图 3a 中的框图描述了振幅和相位检测以及 FM 模式。在振幅和相位检测模式下,LiftMode 扫描期间没有反馈;即,使悬臂振荡的驱动信号具有恒定频率。通过绘制悬臂的相位或振幅与平面坐标的关系,可以生成 3-D EFM 图像。在 FM 模式下,悬臂振荡的相位是相对于高分辨率振荡器的驱动信号的相位来测量的。相位差用作反馈方案中的误差信号;即,驱动信号的频率被调制(图 3a 中的“频率控制线”),以使悬臂振荡相对于驱动信号保持恒定相位。然后绘制驱动信号频率的调制与平面坐标的关系,从而创建 3-D EFM 图像。
Ramana Pidaparti 博士,工程学院委员会主席 Karla Mossi 博士,工程学院 Manu Mital 博士,工程学院 Mohamed Gad-el-Hak 博士,工程学院机械工程系主任 Rosalyn S. Hobson 博士,工程学院研究生院副院长 Russell D. Jamison 博士,工程学院院长 F. Douglas Boudinot 博士,研究生院院长 日期
光场显微镜 (LFM) 是对活体动物脑内神经元活动进行光学成像的关键技术。然而,目前还没有能够提供统一模拟和优化过程的计算框架。本文提出并展示了一种用于 LFM 系统的计算模拟和优化框架。所提出的框架由三个主要模块组成:前向模型、后向模型和优化器。本文全面介绍了每个模块背后的理论背景和实现细节。所开发的计算框架的期望是让非计算方面的用户仍然可以快速原型化并进一步优化他们的 LFM 光学设计和重建模型。此外,本文还对当前 LFM 系统的分类、微透镜阵列优化方法以及基于模型可微性的优化流程做出了贡献。
样品持有人的主要任务是将样品保持在稳定的位置。它也可以配备功能单元,例如加热器或液体腔室。扫描头用于固定悬臂并将其移到样品上。通常,压电驱动器用作精确的电动机,在X和Y方向上扫描样品。z方向上的运动通常也由压电电动机执行。1扫描头最重要的部分是尖端,该尖端位于小悬臂末端。悬臂大约只有头发宽(0.1毫米),通常由硅或氮化硅制成(Si 3 N 4)。尖端本身通常具有4-30 nm的半径(见图2 a)。四季度光电二极管用作从悬臂背面反射的激光的检测单元(见图2 b)。
引言实时细胞显微镜几十年来可以访问,这是从50年前用16毫米胶片拍摄的中性粒细胞来捕捉细菌的电影(David Rogers,Vanderbilt University,http://www.biochemw.biochemw.org.org.org/neutrophil.shtml)。现在,该技术跨越了生命科学的所有领域,也扩展到了物理科学。近年来,技术进步,包括传感器灵敏度,计算能力,更明亮,更稳定的荧光蛋白(FPS)以及用于细胞隔室的新荧光探针,为研究人员提供了大量详细研究复杂生物学过程的工具(Goldman和Spector,2005年)。但是,需要在优化各种显微镜平台的图像采集条件方面的专业知识,以利用活细胞显微镜提供的全部潜力。与任何测量设备一样,最好通过优化系统来最大程度地减少任何扰动,以使其最小化。作为其正常生命周期的一部分,大多数组织和细胞永远不会暴露于光线,众所周知,紫外线(UV)光损害DNA,聚焦红外(IR)光会导致局部加热,荧光激发会导致对组织和细胞的光毒性(Pattison和Davies和Davies,2006年)。活细胞中光毒性的主要原因是自由基物种的氧依赖性反应,这些反应是在激发荧光蛋白或染料分子和周围细胞成分的激发期间产生的。还需要使用低浓度的荧光探针来避免对感兴趣的生物学过程引起非特异性变化。因此,对于实时成像,最好通过优化通过显微镜的光路路径的效率以及使用优化的检测器来检测大多数荧光发射的检测器来降低激发光的量。
摘要。显微镜空间实验旨在以比以往任何时候都更好的精度测试等效原理。其原理是比较嵌入在空间加速度计中的同心测试质量的自由下落。由于所谓的无阻力系统,非重力力对卫星运动的影响大大降低。显微镜从2017年4月到2019年10月运行。对第一系列测量结果的分析导致对等价原理测试的准确性的大约一定程度的改进。在10-14的水平上,铂和钛中的一对肿块未检测到侵犯。显微镜由Onera和OCA提出,作为科学领导者,由CNES作为项目经理开发,是欧洲第一个专门用于低地球轨道基本物理学的太空任务。Zarm,PTB和ESA是欧洲的主要贡献者。