荧光显微镜是细胞生物学1 - 3中普遍存在的表征技术。活细胞的荧光标记不仅可以专门突出生物分子,细胞器或细胞室,还可以绘制物理化学量,例如离子浓度,动作电位,pH,pH,分子方向等。在过去的二十年中,荧光显微镜经历了深刻的改进,并开发了许多变体,从而在空间分辨率,速度,信号噪声比率,特异性,标记技术和3D成像方面推动了成像的极限。然而,荧光显微镜受到限制。它本质上仍然是侵入性的,因为它需要用分子染料或蛋白质4将样品标记。此外,由于荧光标签的光漂白和光吸毒性,无法任意长时间进行实时观察。最后,荧光分子并不总是忠实地标记它们应该的内容,而伪影有时会发生5。定量相显微镜(QPM)是另一个专门针对细胞生物学领域6、7的成像技术家族。与荧光显微镜不同,QPM技术不含标签且非特异性。它们仅对样品的折射率敏感。他们的主要好处是与明亮的场显微镜相比,提供更好的对比度。由于QPM不含标签,因此它们不会遭受与荧光显微镜相关的上述缺陷。但是,QPM本质上不是特定的。此外,生物学介质的折射率和质量密度之间存在的密切关系为QPM提供了QPM的独特能力,可以测量和映射培养物中细胞的质量,从而实现细胞生长的定量监测,以及在第8-11级的亚细胞级别的质量转运。尤其没有任何分子探针的光漂白,并且如果使用红色或红外照明,可以取消光毒性,以非侵入性的方式使图像获取为任意长时间的习得12。一个人无法选择细胞的功能来突出显示,尽管最近一些涉及机器学习的作品试图提高此限制13,14。荧光显微镜和QPM因此以互补方法的形式出现,并将它们结合起来提供多种好处。OPD图像显示的细节在荧光图像中无法看到,反之亦然。OPD揭示了细胞中的所有内容,尤其是细胞的部分未荧光标记的部分。例如,它可以清楚地突出片状膜,核,囊泡或线粒体。相反,荧光受特异性受益,因为它仅突出显示细胞中标记的物体,尤其是对比度太低的对象,无法在OPD图像上看到。然而,荧光显微镜和QPM很少相关。然而,将荧光显微镜与QPM技术偶联至少具有三个重要应用:(i)它将提供生物分子或细胞器的空间分布(例如微管,肌动蛋白,线粒体等)或物理化学参数与细胞的总体形态相关,并具有出色的对比度,包括细胞的微弱部分,例如层状脂肪膜。我们设想重要的应用,例如在细胞内贩运研究中;
必须考虑成像过程的每个步骤:图像捕获、处理和显示。显微照片中的颜色变化通常是由于标本厚度变化、染色差异、图像采集系统变化以及后期图像处理和显示造成的 [4]。尽管可能会非常注意将切片和染色样品产生的伪影降到最低,但通常很少考虑在图像采集和显示过程中对颜色信息的管理。让病理学家就标准化色彩管理系统达成一致的尝试失败了,部分原因是他们对染色的理想颜色存在分歧 [3]。病理学家和显微镜专家使用标准化方案来固定和染色组织,以确保始终如一地生产出用于光学显微镜的高质量组织切片。多个团体认为有必要对显微镜数据收集的成像方面进行标准化 [5-8]。
摘要 R 环杂交和电子显微镜已用于测定克隆基因的细胞 RNA 浓度。在质粒 DNA 序列过量的情况下,所有互补 RNA 都被驱动到可通过电子显微镜分析的 R 环结构中。为测定特定 poly(A)+ RNA 的浓度,将质粒 DNA 每 2000-5000 个碱基对与三氧沙林和紫外线交联一次,以 DNA 序列过量的方式与各种已知量的总 poly(A)+ RNA 杂交,并通过用乙二醛处理来稳定 R 环。如有必要,可使用 Sepharose 2B 色谱法去除多余的未杂交 RNA,从而能够可视化较少的转录本。重建实验表明,通过电子显微镜测定含有特定 RNA 环的质粒 DNA 分子的比例可以给出总 poly(A)+ RNA 群体中特定 RNA 重量比例或浓度的准确值。这些方法还用于测定 TRT3 上与序列互补的五种 RNA 物种的浓度,TRT3 是一种重组 DNA 质粒,含有酵母组蛋白 2A 和 2B 基因以及另外三种非组蛋白基因。所描述的方法允许人们可视化丰富和非丰富转录本的 R 环结构,并通过确定含有 R 环的 DNA 分数来估计这些 RNA 物种的浓度。
通过将人体工程学仪器与Galilean Optics的功率相结合,我们的SZX系列使用户可以舒适地执行长时间的高级立体显微镜任务。新的人体工程学配件使显微镜更接近用户,并为不同高度的个体提供灵活性。在显微镜工作期间为每个用户提供舒适的位置可减少观察过程中的压力并提高效率。
a. 使用具有“接口”选项卡上列出的推荐规格的计算机时,指定的性能有效。b. 曝光时间随操作模式而变化;使用外部触发器时,曝光时间可能短于 1 毫秒。c. ADC = 模拟数字转换器 d. ADU = 模拟数字单元 e. 相机帧速率受垂直硬件分级参数的影响。对于彩色相机,当 ThorCam 中的图像类型设置不是“未处理”时,仅 1 x 1 分级可用。设置为“未处理”时,相机最多可以分级 24 x 24,但生成的图像将是单色的。f. 如果您的应用程序受读取噪声限制,我们建议使用较低的 CCD 像素时钟速度 20 MHz。有关读取噪声的更多信息,以及如何估计总相机噪声限制因素的示例,请参阅相机噪声选项卡。
图 1. 成像装置和物理训练装置。待成像的二聚体被放置在物体平面上,通过低数值孔径透镜 L1(NA=0.3)用波长为 λ = 795nm 的相干激光光源照射。在二聚体上衍射的光通过高数值孔径透镜 L2(NA=0.9)在距离二聚体 h = 2λ 处成像(a)。通过在玻璃基板上的铬膜上聚焦离子铣削制造 12 x 12 = 144 个二聚体狭缝组(b);二聚体的狭缝具有随机宽度 A 和 C,并且以距离 B 随机间隔。在每个二聚体附近制造一个方形对准标记(c)。记录在每个二聚体上衍射的相干光的强度图案。图 (d) 显示了 50λ 宽视场中二聚体的特征衍射图案。
自从 80 年代发明以来,扫描探针显微镜 (SPM) 在大学和工业界中就非常流行,用于检查许多不同的样本参数。这是将这项技术更贴近操作员的效果。尽管易用性为不需要太多劳动力的测量提供了可能性,但定量分析仍然是市场上扫描探针显微镜的限制。根据纳米计量组的经验,SPM 仍然可以被视为定量检查热、电和机械表面参数的工具。在这项工作中,我们提出了一个 ARMScope 平台作为多功能 SPM 控制器,它被证明可用于各种应用:从原子分辨率 STM(扫描隧道显微镜)到多共振 KPFM(开尔文探针力显微镜)到商用 SEM(扫描电子显微镜)。
Thorlabs 科学相机提供 USB 3.0、千兆以太网 (GigE) 或 Camera Link 接口供您选择。GigE 非常适合相机必须远离 PC 或需要由同一台 PC 控制多台相机的情况。GigE 和 Camera Link 相机配有 GigE 或 Camera Link 图像采集卡和电缆。由于大多数计算机都支持 USB 3.0,因此 USB 相机不附带卡;但是,下面单独提供一张卡。所有相机都附带电源和软件。有关包含内容的更多信息,请参阅“发货清单”选项卡。您的计算机必须有一个空闲的 PCI Express 插槽才能安装 GigE 或 Camera Link 接口。有关三个接口选项和推荐计算机规格的更多信息,请参阅“接口”选项卡。
课程计划:我们周围的微生物(无显微镜)的课程计划日期创建:2024-06-10课程计划日期上次编辑:2024-06-10实施的课程计划日期:创建的课程计划:Danielle Condry,PhD受众/年级:中学:中学(6-8年级) - 可以将其转移到K-5或9-1-12或9-12或NOTE。主题:我们各地的微生物:环境科学目标:本课程计划旨在让学生参与动手科学,并更深入地了解影响我们日常生活的微生物世界。步骤1目标(我希望我的听众/学生在本课后能够做什么?):学生将:1。描述微生物在环境中的无处不在。2。练习环境抽样方法来收集微生物。3。观察微生物生长的结果,并推断出在各种环境中微生物的存在。4。讨论微生物对健康和环境的影响。第2步评估计划(我将如何知道我的听众/学生实现目标?):直接评估: - 学生将创建并提交一份实验室报告,详细介绍他们在所选环境中有关微生物存在的抽样方法,观察结果和结论。- 参与有关他们发现的小组讨论和演讲。间接评估: - 活动期间的非正式观察,以衡量学生的参与和理解。- 学生自我反思和反馈形式,涉及他们对微生物的了解。第3步活动(我将如何帮助我的听众/学生实现目标?):材料: - 无菌拭子 - 带琼脂(预先准备)的培养皿 - 永久标记 - parafilm条封闭板
需要确定生物组织切片中的主要(C,H,N和O)含量,这是建立了定量离轴扫描传输离子显微镜(OA-stim)的形式主义。这可以与同时进行弹性反向散射光谱(EB)一起使用,以提供定量的主要元素组成和厚度信息。作为工作的一部分,实施了具有一个自由参数的经验预测指标。预测变量值与高精度文献数据非常紧密。对于2 MeV P – 12 C的弹性散射在正角≤45◦使用插值程序来确定与Rutherford Cross截面的相对偏差确定为≤6。4%。插值基于库仑场,角动量量子数和核结构依赖性核穿透因子。最后,讨论了同时OA-stim和EBS数据的定量组合。