在本文中,我们建议通过引入战略惯例作为实践与实践之间的中间层次,通过理论讨论实践与实践之间的联系来回答它们之间的相互作用问题。在此过程中,我们利用组织惯例的微观方法提供的见解来补充 SAP 观点。我们的论文提供了战略实践、惯例和实践之间相互作用的概念模型。它解释了为什么以及在何种条件下战略惯例的执行方面可以与集体和重复的战略实践相关联;以及为什么以及在何种条件下它们的显性方面可以与对特定战略实践的情境理解相关联。它还认为战略惯例源于实践的制度化和实践的挪用,并对这些过程如何展开给出了见解。
►禁食葡萄糖HBA1C显着降低,谷胱甘肽补充剂T2D个体的GSH显着增加。►HOMA-β,一种胰岛素分泌的指标,显着增加,而与DGα相比,DG Gamma的8-OHDG(一种氧化性DNA损伤标志物在DG Gamma中显着下降,并且在D Gamma vess v and d alpha中保持不变。►根据显性群体分析了Simpson的多样性,与DGα相比,DG Gamma中发现它在DG Gamma中显着增加。►通过beta多样性使用广义unifrac距离方法测量的个体内差异在t2d之间有所不同,并具有补充GSH。
为了对胎儿产生免疫耐受,母体免疫系统与怀孕前相比会有一些变化。免疫耐受开始并发展于母体胎盘界面。在先天免疫中,蜕膜自然杀伤(dNK)细胞、巨噬细胞和树突状细胞在免疫耐受中起关键作用。在适应性免疫中,调节性T细胞(Treg)数量的适度增加和免疫抑制功能是免疫耐受所必需的。滋养层细胞和表达吲哚胺2,3-双加氧酶(IDO)的免疫细胞、表达HLA-G的滋养层细胞、Th1/Th2向Th2显性转变以及Th17/Treg向Treg显性转变有利于母胎免疫耐受。类固醇(雌激素和孕激素)和人绒毛膜促性腺激素(HCG)也通过诱导Treg细胞或上调免疫抑制细胞因子参与免疫耐受。慢性HBV感染者多数在妊娠前处于“HBV免疫耐受期”,妊娠期间肝脏疾病相对稳定。慢性HBV感染妇女分娩后,体内相对的免疫抑制状态发生逆转,Th1/Th2平衡中Th1占主导,Th17/Treg平衡中Th17占主导。分娩后,外周血中Treg数量减少,NK细胞数量增多且具有细胞毒性,肝脏NK细胞可能通过非抗原特异性机制引起肝脏炎症。分娩后,CD8+T细胞数量会回升,HBV特异性T细胞应答从妊娠期的功能障碍中恢复。在产后炎症的背景下,产后皮质醇的快速下降,特别是HBV DNA和细胞因子诱导的HBV特异性T细胞应答增强,是产后肝炎发生的主要原因。HBeAg阳性,特别是HBeAg<700 S/CO、HBV DNA>3-5Log 10 IU/ml是产后肝炎的危险因素。
甲状腺功能障碍包括甲状腺功能减退和甲状腺功能亢进,是成年人普遍存在的健康问题和内分泌系统疾病,女性发病率更高 ( 1 )。该病的特点是血清促甲状腺激素 (TSH) 水平出现偏差,可表现为显性或亚临床形式,分别以 TSH 水平异常伴有或不伴有伴随症状以及游离甲状腺素 (FT4) 水平异常和正常为特征。值得注意的是,人们普遍认为血脂异常常见于甲状腺功能障碍患者,这表明甲状腺激素和脂质代谢之间存在内在联系 ( 2 – 4 )。甲状腺功能亢进的特征是低密度脂蛋白胆固醇 (LDL-C)、甘油三酯 (TG) 和总胆固醇 (TC) 水平较低,而高密度脂蛋白胆固醇水平较高 ( 2 , 5 )。另一方面,显性和亚临床甲状腺功能减退都与 TC 和 LDL-C 水平升高有关。同样,据观察,TSH 水平与 TC、LDL-C 和 TG 水平升高有关,而游离甲状腺素则可降低胆固醇水平(2、4、6)。研究证明甲状腺激素对心脏和心血管系统有显著影响(7)。长期以来,人们认识到甲状腺功能障碍的一些常见表现是甲状腺激素对心血管系统的生理影响的结果,包括静息心率、左心室收缩力、动脉粥样硬化、全身血管阻力和血容量。在心血管疾病管理中,通常建议开具他汀类降脂药物,目的是调节动脉粥样硬化(8、9)。鉴于甲状腺功能障碍与心血管疾病之间已确定的关系,在甲状腺相关心血管疾病患者中应用降脂扰动并不罕见。然而,降脂药物对甲状腺功能障碍患者的风险和益处仍不明确。一系列回顾性队列研究和临床试验表明,他汀类药物的使用与血脂异常患者的甲状腺功能恢复、甲状腺结节发生率减少、甲状腺体积缩小和甲状腺自身免疫力降低有关,但
摘要:对三方共生中豆类根际的这项研究的研究重点是共生体之间的关系,而较少的整体根际微生物组。,我们使用了一种实验模型,该模型与AM真菌接种(根瘤菌异常和AM物种混合)的不同花园豌豆基因型来研究它们对土壤微生物主要营养基团的人群水平以及根茎微生物群落中的结构和功能关系的影响。实验是在植物的两个物候周期上进行的。分析:微生物种群密度定义为CUF/G A.D.S.和AMF(%)的根定植率。 我们发现,AMF对微切菌和放线菌的密度有证明的显性作用,朝着还原的方向,表明拮抗作用,以及氨化,磷酸盐 - 溶解和自由生命的非同营养性氮杂杆菌细菌在刺激方向,指示相互关系的指示。 我们确定基因型对于固定矿物质NH 4 + -N和细菌根茎的细菌种群的形成是决定性的。 我们报道了与土壤氮和磷离子可用性相关的营养基团之间的显着双向关系。 微生物群落中营养基团之间保存的比例表明结构和功能稳定性。和AMF(%)的根定植率。我们发现,AMF对微切菌和放线菌的密度有证明的显性作用,朝着还原的方向,表明拮抗作用,以及氨化,磷酸盐 - 溶解和自由生命的非同营养性氮杂杆菌细菌在刺激方向,指示相互关系的指示。我们确定基因型对于固定矿物质NH 4 + -N和细菌根茎的细菌种群的形成是决定性的。我们报道了与土壤氮和磷离子可用性相关的营养基团之间的显着双向关系。微生物群落中营养基团之间保存的比例表明结构和功能稳定性。
本书的统一主题是智能代理的概念。从这个角度看,人工智能的问题是描述和构建从环境中接收感知并执行操作的代理。每个这样的代理都由将感知映射到操作的函数实现,我们介绍了表示这些功能的不同方法,例如生产系统、反应代理、逻辑规划器、神经网络和决策理论系统。我们解释了学习的作用是将设计者的视野扩展到未知环境,并展示了它如何限制代理设计,有利于显性知识的表示和推理。我们将机器人技术和视觉视为服务于目标实现的服务,而不是独立定义的问题。我们强调任务环境特征在确定适当的代理设计中的重要性。3. 全面和最新的报道。
孟德尔遗传学通常通过学生在实验室中对活果蝇(果蝇)进行实验来教授。这种方法可能受到机构资源和果蝇生命周期所要求的时间的限制。FlyBuilder 通过使用还原论纸娃娃果蝇工具包克服了这些实际限制。在这里,我们提供 FlyBuilder 作为免费的多模态遗传学课程,可以将其集成到现有课程中。FlyBuilder 使用果蝇平衡染色体和可见的“标记”突变来说明和应用隐性致死、基因型-表型配对、表型显性和果蝇转基因的例子。我们在两所大学的入门、中级和高级主题生物学和神经科学课程中使用了 FlyBuilder,它获得了学生的积极反馈和理解。首页
授予/奖励号:U19AG032438;国家老化研究所;阿尔茨海默氏症协会,赠款/奖励号:SG-20-690363-DIAN LATAM;德国神经退行性疾病中心;劳尔·卡雷(Raul Carrea)神经研究所;痴呆症的研发赠款;日本医学研发机构;韩国痴呆研究中心,赠款/奖励号:HU21C0066;西班牙卫生研究院卡洛斯三世;加拿大卫生研究所;加拿大神经退行性和衰老联盟,大脑加拿大基金会; BMBF-德国研究和教育部,赠款/奖励号:(FKZ,FKZ161L0214B,FKZ161L0214CCLINSPECT-M);德国研究基金会在慕尼黑系统神经病学框架内的德国卓越策略(Synergy),赠款/奖励号:exc2145Synergy -ID390857198
1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向