木瓜蛋白酶样免疫蛋白酶 (PLCP) 是作物保护的有希望的工程目标,因为它们在番茄、玉米和柑橘等主要作物的植物免疫中发挥着重要作用 (Misas-Villamil 等人,2016 年)。病原体分泌的 PLCP 抑制剂种类繁多,凸显了这些蛋白酶在防御各种病原体方面的重要性。例如,番茄中质外体免疫 PLCP 疫霉菌抑制蛋白酶 1 (Pip1) 的消耗会导致对细菌、真菌和卵菌番茄病原体的超敏性 (Ilyas 等人,2015 年)。然而,Pip1 在野生型番茄中的免疫力并不理想,因为 Pip1 在感染过程中受到多种病原体分泌的抑制剂的抑制,例如来自卵菌晚疫病原体 Phytophthora infestans 的胱抑素样 EpiC2B (Tian 等人,2007)。在这里,我们测试了是否可以通过将 Pip1 改造成 EpiC2B 不敏感的蛋白酶来增加基于 Pip1 的对晚疫病的免疫力。为了指导 Pip1 诱变,我们使用 AlphaFold-Multimer 生成了 EpiC2B-Pip1 复合物的结构模型 (Evans 等人,2022)。该结构模型代表了胱抑素 (EpiC2B) 的三部分楔与木瓜蛋白酶 (Pip1) 的底物结合槽之间的经典相互作用。该模型表明,由于 Pip1 与 EpiC2B 的相互作用表面大于底物结合槽,因此可以对 Pip1 进行工程改造以防止抑制,而不会影响 Pip1 底物特异性(图 1a)。我们选择了九个残基对 Pip1 进行定向诱变,这些残基预计会直接与 EpiC2B 相互作用,但不在底物结合槽中(图 1a)。为了最大程度地破坏蛋白酶-抑制剂相互作用,我们将这些残基替换为带相反电荷的大氨基酸。随后
创新描述:用于检测早疫病和晚疫病的马铃薯 AI 模型已添加到 PlantVillage Nuru 应用程序中,现在可用于 Android 和 iOS 操作系统。这项创新旨在帮助农民在田间诊断作物病害,无需互联网连接。
摘要:番茄晚疫病(LB)的病原菌是致病疫霉菌,是一种毁灭性的疾病,严重影响植物的生产力。植物中易感基因(S)的存在促进了病原菌的增殖;因此,抑制这些基因可能有助于提供广谱和持久的耐受性/抗性。先前对拟南芥和番茄的研究表明,PMR4 易感基因的敲除突变体对白粉病具有耐受性。此外,马铃薯中 PMR4 的敲低已被证明可以赋予对 LB 的耐受性。为了在本研究中验证番茄中的相同效果,将含有四个单向导 RNA(sgRNA:sgRNA1、sgRNA6、sgRNA7 和 sgRNA8)的 CRISPR-Cas9 载体(靶向尽可能多的 SlPMR4 区域)通过农杆菌介导的转化引入两种广泛种植的意大利番茄品种:“San Marzano”(SM)和“Oxheart”(OX)。选择了 35 株植物(26 株 SM 和 9 株 OX)并进行筛选,以确定 CRISPR/Cas9 诱导的突变。不同的 sgRNA 导致的突变频率范围从 22.1% 到 100%,或者精确插入(sgRNA6)或缺失(sgRNA7、sgRNA1 和 sgRNA8)。值得注意的是,sgRNA7 在七种 SM 基因型中诱导了纯合状态下的 − 7 bp 缺失,而 sgRNA8 导致产生十五种具有双等位基因突变( − 7 bp 和 − 2 bp)的 SM 基因型。选定的编辑品系接种了 P. infestans,其中四种在 PMR4 基因座完全敲除的品系与对照植物相比表现出减轻的病害症状(易感性从 55% 降低到 80%)。使用 Illumina 全基因组测序对四种 SM 品系进行测序以进行更深入的表征,而未显示出候选脱靶区域发生任何突变的证据。我们的结果首次表明,pmr4 番茄突变体对致病疫霉菌的易感性降低,证实了 KO PMR4 在提供针对病原体的广谱保护中的作用。
分别使用嵌合引物UF/UT (-)和gRT (+)/gR-R进行扩增,其中靶序列被设计在gRT (+)和UT (-)引物中。在嵌套PCR位点特异性引物对的第二个PCR反应中,使用含有BsaI切割位点的Pps/Pgs来扩增带有靶序列的sgRNA表达盒。BsaI位点被设计在用于Golden Gate连接的位点特异性引物中。BsaI属于IIs型限制性内切酶,具有一种新的切割特性,可以产生非回文的独特粘性末端,从而避免自连接和连接不相容末端[39]。我们使用Golden Gate克隆策略制备了pYLCRISPR/Cas9Pubi-BstERF3构建体,该构建体携带两个由OsU6a启动子驱动的sgRNA表达盒,用于马铃薯的基因靶向。
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
马铃薯 ( Solanum tuberosum L.) (2 n = 4 x = 48) 是人类消费量继大米和小麦之后的第三大重要粮食作物。马铃薯被视为欧洲和美洲部分地区的主食。2018 年,世界马铃薯总产量为 3.6817 亿吨,其中中国(9026 万吨)位居第一,印度(4853 万吨)紧随其后(FAOSTAT,2018 年)。世界人口将从现在的 77 亿增加到预计 2050 年的 97 亿,对粮食供应构成了巨大挑战(联合国,2019 年)。马铃薯易受到各种病原体、害虫和环境非生物胁迫的侵害。在气候变化情景下,情况正在恶化。在印度,主要马铃薯种植邦的平均马铃薯产量(占全国马铃薯产量的 90%)可能会在 2050 年代下降 2.0%,在 2080 年代下降 6.4%(Rana 等人,2020 年)。为了解决这些问题,常规育种在品种开发计划中发挥了关键作用,同时结合标记辅助选择,主要针对晚疫病、病毒和马铃薯胞囊线虫 - 世界各地的抗性品种,例如印度的 Kufri Karan(ICAR-CPRI 年度报告,2018-19 年)。后来,马铃薯转基因技术也得到了开发,以抵抗疾病(如晚疫病和病毒)、非生物胁迫(如高温和干旱)、害虫(如马铃薯胞囊线虫和马铃薯块茎蛾)、加工品质(如降低冷诱导甜度),但它们均未在田间应用。因此,随着测序技术的进步和马铃薯基因组序列的可用性(马铃薯基因组测序联盟,2011),有可能应用基因组学工具(如基因组编辑)来调节目标基因。基因组编辑是一种先进的基因组学工具,可通过基因敲除和插入/缺失诱变来改良作物(Hameed 等人,2018)。它允许在基因组中的特定位点发生双链断裂(DSB),并通过自然发生的 DNA 修复机制进行修复,即非同源末端连接 (NHEJ) 或同源重组 (HR)。过去,该系统早期由蛋白质引导的核酸酶促进,例如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN)。但现在,人们的注意力转向了一种新的 RNA 引导核酸酶,称为成簇的规律间隔的短回文重复序列 (CRISPR) — CRISPR 相关 (Cas) (Nadakuduti 等人,2018)。与组装 CRISPR/Cas 相比,TALEN 和 ZFN 需要特殊的专业知识、更长的时间和更高的成本。事实上,据报道,CRISPR/Cas 在作物中的应用取得了巨大进展。在马铃薯中,CRISPR/Cas 已被证明可以改善块茎品质、抗病性(晚疫病和马铃薯 Y 病毒)、表型和其他性状(Dangol 等人,2019 年;Hameed 等人,2020 年;Hofvander 等人,2021 年)。本文介绍了 CRISPR/Cas 的现状、未来前景以及马铃薯面临的挑战。
abhishek_official@hotmail.com,mahato.satyajeet1@gmail.com摘要:农业是我们社会最关键的领域之一,自从中世纪以来。作物疾病是对粮食安全的重大威胁,但是由于世界许多地方缺乏设施,因此很难及时检测。细菌和真菌以多种方式感染番茄植物。早期疫病和晚期疫病是两种影响植物的真菌疾病。细菌斑是由四种xanthomonas物种引起的,可以在多于西红柿的任何地方找到。智能手机辅助疾病检测现在是可能的,这要归功于全球智能手机的渗透不断上升,并且通过深度学习使机器视觉的最新发展成为可能。为了区分不同的番茄叶,我们使用了54,306张在受控条件下收集的患病和健康植物叶片图像的公共数据集训练了深度卷积神经网络疾病,并选择了西红柿的图像。对越来越广泛且公共可访问的图像数据集的培训深度学习模型指向技术诊断的直接途径。关键字:早期疫病,晚疫病,细菌斑点,叶片,片状叶斑,靶点点,黄色叶卷病毒,Mosiac病毒,两个斑点的蜘蛛螨1.引言农业是每个文明的基本基础之一。种植蔬菜(如西红柿)在印度各种亚热带气候中有效。一种患病的植物无法达到其正常状态。晚疫病和早期疫病是两种常见的番茄疾病[1]。一种疾病也可以描述为干扰植物的产量并降低其活力。在印度,疾病随季节的变化而受到环境因素的影响。病原体和本季节种植的各种作物在这些疾病中起作用。他们有可能破坏番茄植物和农业土地。可能会发现晚期疫病和植物叶的早期疫病,但是如果手动执行需要很长时间。结果,需要更新的更改。借助图像处理和计算机视觉,有很多方法可以检测对象及其独特的特征。深度学习CNN模型[2]是最常见的方法之一。在我们的情况下,该模型将根据叶子的图片检测疾病。
马铃薯叶疾病主要有两类;早期疫病和晚疫病疾病。这种疾病在某些天气模式中可能更普遍,并且对马铃薯作物产生灾难性影响。总结,温暖,潮湿的天气,经常降雨或大量露水,15°C至20°C之间的温度以及缺乏阳光的天气条件是可能导致马铃薯晚枯萎病的天气条件。较干燥的天气条件有利于早期疫病,与后期的疫病不同。温暖而干燥的天气,缺乏降雨或灌溉,21°C至29°C之间的温度以及早晨的高湿度是可能导致马铃薯早期枯萎病的天气状况。修改的数据集用于受气候影响的预测,使用随机森林模型的测试精度为97%。对实验结果的分析表明,基于天气数据框架的建议的马铃薯叶疾病预测优于框架的结果。