AATF执行董事Canasius Kanangire博士指出,通过该项目开发的改进农作物将为卢旺达农民提供机会进入和种植有抵抗破坏性虫害和疾病的新品种。“木薯棕色条纹和马铃薯晚疫病等疾病的破坏性性质,以及诸如STEM虫和秋季军虫等害虫,否认卢旺达的农民将这些广泛种植的主食食品作物充分利用,”他说。“通过提供针对这些威胁的保护,新品种将有助于确保农民更好的收获和优质产品。” Kanangire博士指出,AATF一直与各种农作物价值连锁店的各种合作伙伴合作,以使整个撒哈拉以南非洲的小农户有各种各样的农业创新,从而改善了健康并为其家庭和社区带来财富。拜耳东非的监管科学项目负责人Simon Njeru表示,农业创新有可能取得重大进展,尤其是在应对气候变化,增强营养和增强社区能力方面。
摘要 马铃薯作为第四大粮食作物,在全球经济中占有重要地位,但它受到众多害虫以及细菌、病毒和真菌疾病的影响。在这些疾病中,通过蚜虫在植物之间传播的马铃薯 Y 病毒 (PVY) 会造成严重的产量损失,但据我们所知,PVY 在欧洲的经济影响尚未量化。我们的经济研究涵盖了 2004 年至 2017 年之间的 13 年时间,基于对从瑞士和欧盟马铃薯行业各利益相关者以及田间试验获得的统计、经济和农艺数据的分析。在瑞士,PVY 对种子和商品生产造成的经济损失估计分别约为 2000 和 200 瑞士法郎/公顷。对于欧盟,每年的损失估计为 1.87 亿欧元,其中种子和商品损失分别为 9600 万欧元和 9100 万欧元。这些损失主要是由于种薯生产中化学处理的成本和成品薯产量下降。然而,根据文献,这些重大损失低于马铃薯晚疫病(致病疫霉菌)造成的损失,后者被认为是欧洲最具经济损失的马铃薯病害。
EASAC 欧洲科学院科学咨询委员会 EFSA 欧洲食品安全局 ENGL 欧洲转基因生物实验室网络 ENSSER 欧洲社会和环境责任科学家网络 ERA 环境风险评估 EU 欧洲联盟 EURL 欧盟参考实验室 EU-SAGE 通过基因组编辑实现欧洲可持续农业 FAO 联合国粮食及农业组织 F2F 从农场到餐桌战略 FRM 森林繁殖材料 FSFS 可持续粮食系统框架 FTE 全职当量 GHG 温室气体 GMO 转基因生物 GM 转基因 HRI 协调风险指标 HT 耐除草剂 IIA 初始影响评估 IPR 知识产权 ISAA 国际农业生物技术应用获取服务 JRC 欧盟委员会总司联合研究中心 LCA 生命周期评估 MRIO 多区域投入产出模型 NCWS 非腹腔小麦敏感性 NGT 新基因组技术 OECD 经济合作与发展组织PLB 马铃薯晚疫病 PRM 植物生殖材料 QALY 质量调整生命年 R&D 研究与开发 RNQP 管制非检疫性害虫
(RxLR) 基序,这是易位所必需的 [2,5]。RxLR 效应物递送到宿主细胞中的方式存在争议;关于 RxLR 基序与宿主质膜脂质结合和细胞自主摄取的说法受到了质疑 [4]。有证据表明 RxLR 基序是蛋白水解加工的位点,在分泌过程中被切割和去除 [5]。与卵菌效应物相比,真菌细胞质效应物缺乏与易位相关的明显氨基酸基序。然而,卵菌和真菌效应物中保守的结构折叠被认为有助于效应物递送 [4]。有趣的是,真菌病原体稻瘟病菌 [ 6 ] 和卵菌晚疫病菌 [ 7 ] 的细胞质效应物都是通过非常规蛋白分泌 (UPS) 途径从这些病原体中输出的,也就是说,尽管它们具有分泌信号肽,但它们的输出对抑制剂布雷菲德菌素 A 不敏感,因为抑制剂布雷菲德菌素 A 会阻断细胞内囊泡运动,从而阻止通过内质网 (ER) 和高尔基体的常规分泌。分泌途径可能是决定这些病原体向宿主输送的关键步骤。事实上,有证据表明,通过 UPS 途径从丝状病原体中输出细胞质效应物的情况非常普遍 [ 4 ]。除了了解细胞质效应物的分泌之外,一个关键问题是:它们如何进入植物细胞?
转基因作物的商业化需要严格的安全评估,包括对插入的 T-DNA 进行精确的 DNA 水平表征。过去,已经开发了几种识别 T-DNA 插入位点的策略,包括南方印迹和不同的基于 PCR 的方法。然而,这些方法通常难以扩大规模以筛选数十种转基因事件和具有复杂基因组的作物,如马铃薯。在这里,我们报告使用目标捕获测序 (TCS) 来表征马铃薯中 34 个转基因事件的 T-DNA 结构和插入位点。这个 T-DNA 是左右边界之间的 18 kb 片段,携带三个抗性 (R) 基因(RB、Rpi-blb2 和 Rpi-vnt1.1 基因),可完全抵抗晚疫病。使用 TCS,我们在 T-DNA 和连接区域内获得了高序列读取覆盖率。我们确定了 85% 转基因事件两端的 T-DNA 断点。约 74% 的转基因事件的 T-DNA 中 3 个 R 基因序列完整。一半转基因事件的 T-DNA 侧翼序列来自马铃薯基因组,约三分之一 (11) 的转基因事件在马铃薯基因组中定位了一个 T-DNA 插入,其中五个事件不会中断现有的马铃薯基因。使用 PCR 和 Sanger 测序确认了 6 个最佳转基因事件的 TCS 结果,这 6 个转基因事件占适合监管部门批准的转基因事件的 20%。这些结果证明了 TCS 在转基因作物中精确表征 T-DNA 插入方面具有广泛的适用性。
番茄的遗传基础狭窄,给育种带来了严峻挑战。因此,随着成簇的规律间隔短回文重复序列 (CRISPR) 相关蛋白 9 (CRISPR/Cas9) 基因组编辑的出现,快速高效的番茄育种已成为可能。番茄的许多性状已使用 CRISPR/Cas9 进行编辑和功能表征,例如植物结构和花的特性(例如叶、茎、花、雄性不育、果实、单性结实)、果实成熟、品质和营养(例如番茄红素、类胡萝卜素、GABA、TSS、花青素、保质期)、抗病性(例如 TYLCV、白粉病、晚疫病)、非生物胁迫耐受性(例如热、旱、盐度)、CN 代谢和除草剂抗性。CRISPR/Cas9 已被证明可用于将野生近缘种的优良性状从头驯化到栽培番茄,反之亦然。 CRISPR/Cas 的创新允许使用在线工具进行单向导 RNA 设计和多路复用、克隆(例如 Golden Gate 克隆、GoldenBraid 和 BioBrick 技术)、强大的 CRISPR/Cas 构建体、高效的转化方案(例如农杆菌)和用于 Cas9-gRNAs 核糖核蛋白 (RNPs) 复合物的无 DNA 原生质体方法、Cas9 变体(例如无 PAM 的 Cas12a 和 Cas9-NG/XNG-Cas9)、基于同源重组 (HR) 的双生病毒复制子基因敲入 (HKI) 以及碱基/引物编辑(Target-AID 技术)。这篇小型评论重点介绍了 CRISPR/Cas 在番茄快速高效育种方面的最新研究进展。
在埃塞俄比亚,在开始任何转基因生物 (GMO) 的研究和开发之前,必须获得埃塞俄比亚环境保护局 (EPA) 的批准和书面许可。该局的这一权力来自人民代表院批准的《生物安全(修订)公告》第 896/2015 号。EPA 根据申请人提供的数据、对实验室和田间试验地点的检查形成意见。这一决策权的补充是埃塞俄比亚联邦民主共和国部长理事会根据第 411/2017 号部长理事会条例成立的国家生物安全咨询委员会 (NBAC) 就生物安全相关问题提供的建议。2018 年,该局放宽了两种 Bt 棉花品种的管制,使该国首次正式接受转基因或生物技术作物产品。到目前为止,该机构已经颁发了对 bt 棉花和转基因 enset 进行实验室封闭试验的许可证和对两种玉米杂交品种 (TELA TM ) 进行田间封闭试验 (CFT) 的许可证、对 3 个 R 基因晚疫病抗性 (LBR) 堆叠顺式马铃薯的 CFT 许可证以及对三基因 BT-GT 杂交棉花品种的 CFT 许可证。新的育种技术及其产品正在进入全球市场,有望实现高生产力,实现可持续的未来粮食安全。这项工作研究了这些发展以及所选国家随之而来的安全问题和监管困境。然后,它评估了埃塞俄比亚生物安全框架相对于新育种技术的现状。这里提供的证据表明,埃塞俄比亚需要制定处理新育种技术产品的指南。关键词:育种技术、生物安全监管和转基因
番茄(Solanum lycopersicum L.)是热带和亚热带地区的重要作物,但它非常容易受到生物胁迫,尤其是由植物疫霉引起的晚疫病。这种真菌疾病会导致突然爆发,导致严重的作物损失。化学控制仍然是管理这种爆发的重要策略。这项研究评估了以建议剂量喷洒的20种不同杀菌剂的有效性,用于控制晚期番茄和改善番茄的生产。易感番茄品种纳吉纳(Nagina)在体内随机完整块设计(RCBD)下种植。基于在番茄植物上产生的疾病感染的百分比和统计分析结果,结果发现,氯化脂蛋白(13.62%),Cabrio Top(14.91%),Curzate M(15.38%),Ridomil Gold(16.77%),Jalva(17.13%),Jalva(17.13%),Nanok(17.13%),Nanok(19.2%),以及34%(199.2%),和34 and and and,and and and and and and and and and and and and(and)针对p的杀菌剂。İnfestans。其他杀菌剂,例如共同仿制(21.1%),Flumax(21.54%),Alliette(23.81%),得分(24.35%),成功40 WSP(25.13%)和旋律应得的(28.82%)也表现出有效的结果。然而,杀菌剂如拉力赛(32.23%),cytrol(34.28%),刺激性(37.46%),evito(37.52%),什叶州(43.63%),TOPAS(45.83%)和倾斜度(48.59%)在疾病中的有效性较小。这些发现突出了使用氯糖蛋白,Cabrio Top,Curzate M,Ridomil Gold,Jalva,Nanok和Antracol的重要性,是高效杀真菌剂来对抗晚期疫病。这种靶向方法可确保在最有效地预防疾病暴发,减少杀菌剂的总体使用和成本时,可以应用它们。
植物病害爆发代表着全球粮食安全和环境可持续性的重大挑战,导致初级生产力下降、生物多样性减少,以及全球严重的粮食/饲料短缺。合成杀菌剂的滥用已经对人类健康和生态系统造成了重大危害。某些人类疾病,如阿尔茨海默氏症和自闭症,在过去几十年中急剧上升,这一趋势部分归因于现代农业和园艺中杀菌剂的使用/过度使用。鉴于这些令人担忧的迹象,现在应该重新考虑植物病害管理策略了。使用某些有益微生物(称为生物防治剂)有望成为对抗植物病原体的环保方法。卵菌通常被视为植物界的坏人,通过晚疫病、猝倒病和枯萎病等破坏性疾病造成混乱,这可能会造成灾难性的后果,例如爱尔兰马铃薯饥荒。然而,并非所有卵菌都是有害的!有些菌是伪装的好家伙,显示出帮助我们对抗植物疾病的潜力,可以作为有效的生物防治剂。了解生物防治卵菌保护作用的潜在机制对于实现理想结果和制定创新策略至关重要。卵菌的生物防治机制可分为五类:i)菌寄生,ii)分泌溶解酶,iii)与病原体竞争营养和空间,iv)诱导系统抗性(ISR),v)产生注射细胞(枪细胞)。本综述阐明了卵菌采用的生物防治机制,强调了它们的潜在实际意义以及对植物生长的积极影响。本文还讨论了影响生物防治卵菌功效的土壤和环境因素,以及旨在提高其生物防治效率或扩大目标病原体范围的各种策略。尽管对生物防治卵菌的了解取得了进展,但由于受环境条件、土壤类型、接种物活力、竞争微生物的影响,其田间表现不一致,因此其商业应用面临挑战。通过开发稳定的配方、基因改造、合成生物学、结合多种菌株以及与其他农艺实践相结合来提高生物防治卵菌的功效,可以帮助克服这些挑战并促进其在可持续农业中的应用。进行全面的风险评估以避免非目标效应,并简化监管审批流程也至关重要。了解生物防治卵菌如何抵抗植物病原体将提高我们对有益和有害微生物之间相互作用的基本认识,增强我们预测受其影响的植物疾病发展动态的能力