本文对当前复制Openai的O1模型功能的方法进行了批判性检查,特别关注广泛但通常未公开的知识蒸馏技术的使用。虽然我们以前的工作(第1部分(Qin等人,2024))探讨了O1复制的基本技术途径,这项研究揭示了O1的API的简单蒸馏,并结合了监督的微调,可以在复杂的数学推理任务上实现卓越的性能。通过广泛的实验,我们表明,基本模型对数万个样本O1延伸的长期思考链的微调优于美国邀请赛数学考试(AIME),其技术复杂性最少。此外,我们的调查范围超出了数学推理,可以探索跨不同任务的O1延伸模型的概括能力:幻觉,安全性和开放域QA。值得注意的是,尽管仅对数学解决问题的数据进行了培训,但我们的模型证明了对开放式质量QA任务的强烈概括,并且在微调后变得明显降低了对无粘液的影响。我们故意将这一发现公开以促进AI研究中的透明度,并挑战该领域中晦涩的技术主张的当前趋势。这种教育的命令不仅代表了技术考虑因素,而且代表了一个基本的人类使命,它将影响AI创新的未来。1相关资源将在https://github.com/gair-nlp/o1-journey上找到。我们的工作包括:(1)蒸馏过程及其有效性的详细技术阐述,(2)一个全面的基准测试框架,用于评估和分类O1复制尝试,基于其技术透明度和可重复性,(3)对痛苦的限制和潜在的限制,我们对痛苦的限制和潜在的风险进行了关键的讨论:我们的分析:crcial crcial crucial:crucial clucial clucial clucial clucial clucial clucial clucial clucial culminates''''''系统很重要,以第一原则思维为基础的研究人员的发展至关重要。
收到:20-12-2024 /接受了修订:24-12-2024 /发布:03-01-2025摘要:当前的评论表明,Acyclovir和Omeprazole Nanogel通过溶解的分散技术有效地解决了不同的定义F1-F9,在F9中有合理的f9 for ven for Gel Planne for gel planne。药物并非完全由紫外线镜技术固定在石头上。布置的纳米凝胶是晦涩的,几乎没有结,分子和总数。以这种方式,每个定义都是同质的。可扩展性测量集中在F9上,纳米凝胶具有很大的传播性。纳米凝胶计划显示了3268-3528 CPS的一致性领域。认为它们本质上是稳定的。进行了体外崩解研究,并表明F9具有很高的瓦解率。 分子大小,PDI和Zeta潜力以找出F9计划。 分子大小,PDI和ZETA电位分别视为687.4、0.842和-43.7。 tem图片在650 nm处肯定了颗粒的圆形和光滑表面状态。 对比F9纳米凝胶定义和Acyclovir进行了宣传的细节(MF)。 根据结果,计划的阿昔洛韦和奥美拉唑纳米凝胶比促进的阿辛克罗维尔萨尔夫更有效。 随后从我们的评论中,阿昔洛韦和奥美拉唑纳米凝胶(F9)表明,支持药物放电比展示的计划,因此很明显,弄清楚纳米凝胶结果逐渐增加了纳米凝胶结果。进行了体外崩解研究,并表明F9具有很高的瓦解率。分子大小,PDI和Zeta潜力以找出F9计划。分子大小,PDI和ZETA电位分别视为687.4、0.842和-43.7。tem图片在650 nm处肯定了颗粒的圆形和光滑表面状态。对比F9纳米凝胶定义和Acyclovir进行了宣传的细节(MF)。计划的阿昔洛韦和奥美拉唑纳米凝胶比促进的阿辛克罗维尔萨尔夫更有效。随后从我们的评论中,阿昔洛韦和奥美拉唑纳米凝胶(F9)表明,支持药物放电比展示的计划,因此很明显,弄清楚纳米凝胶结果逐渐增加了纳米凝胶结果。
在第二次世界大战期间,由于双方试图比对方的优势而产生了许多重要的技术创新。的例子包括雷达,声纳,原子弹和弹道导弹。这些导弹以德国V2的形式于1944年9月7日首次部署。本文将解释导致该新武器系统部署的事件。本文将主要是文学评论,因为我的研究主要依赖迈克尔·诺伊菲尔德(Michael Neufeld)的《火箭和帝国》(The Reich)。它详细介绍了我的研究的许多方面。在我的评估中,火箭最初被认为是替代和改进远程炮兵。他们的支持者希望这些火箭的突然部署能够使敌人士气低落,从而取得了迅速的胜利。最终,V2的武器效率太大,无法对战争产生任何明显的影响。在1920年代后期的几年中,魏玛共和国正处于飞行飞行的痴迷之中。这种迷恋在火箭和帝国中描述了这种迷恋。在1929年,一部关于月球航行的电影,弗劳·蒙德(Frau Im Mond)(月球上的女人)在柏林播放。报纸宣布即将推出高空火箭,该火箭计划是该电影的宣传特技。在过去的几年中,进行了各种奇怪而危险的示范,并进行了黑色粉末火箭,上面贴在自行车,汽车,甚至是铁路车上。在本书中,奥伯斯描述了实现载人太空飞行的各种方法。尤其是头条新闻是继承人对欧宝汽车公司Fortune Fritz von Opel进行的赛车特技表演。这种时尚的催化剂是在1923年的出版物中,曾在《赫尔曼·奥伯斯》(Hermann Oberth)撰写的《死亡的Zu denplanetenräumen》(Rocket ofPlaneTenräumen)中,这是居住在特兰西瓦尼亚的德国人。特别重要的是他的数学证明是,使用液体氧气和酒精的液体燃料火箭要比传统的黑色粉末火箭强大得多。只有在这项工作被奥地利作家和所谓的天文学家Max Valier发现之后,它才受到任何广泛关注。Valier开始了只能被描述为一种积极的公共关系之旅。他撰写了许多文章,并发表了演讲,吹捧了Oberth的想法。应该指出的是,奥伯斯的想法并不是他独特的。美国的罗伯特·戈达德(Robert Goddard)和俄罗斯康斯坦丁·托西奥尔科夫斯基(Konstantin Tsiolkovsky)也得出了许多相同的结论。但是,他们的工作很难获得;要么隐藏在晦涩的出版物中,要么以模棱两可的方式写成。对大多数人不知道
核碱基。6尽管从那时起,众多CT状态的示例已在不同的修饰和DNA的天然形式中得到了证实,但控制此过程效率的关键因素仍然是晦涩的。因此,对能够执行效果紫外线诱导的电荷转移的DNA序列的预测仍然是一个挑战。在不同的过程中,可以通过DNA中的电荷分离触发的不同过程,环丁烷嘧啶二聚体(CPD)的自我修复最近引起了很大的关注。15,16 CPD是DNA暴露于紫外线的最常形成的光子,其最具特征性的结构元素是在两个相邻的嘧啶碱基之间形成的环丁烷环。17 - 21形成该环丁烷环的形成影响糖 - 磷酸骨架的结构,并排除了生化活性,例如DNA复制和转换。21,22在生物学中,CPD修复酶,例如光酶,通过从avin腺嘌呤co因子注入电子,修复病变,从而吸收可见光。23 - 27类似地,表明特定的c dNA序列或替代核碱基通过光诱导的电子转移触发非酶DNA自修复。16,28 - 30最突出的DNA自我修复例子被证明了代表CPD的损坏的GAT] T序列(“]”),以及位于CPDS的附属物中的2,6-二氨基嘌呤(D)和8-氧气胰蛋白酶(d)和8-氧气(O)核苷酸酶。尤其是31,32,描述了GAT] T序列是在其光激发时从鸟嘌呤转移的顺序电子转移。3133 - 35换句话说,非酶DNA自我修复的产率是表现出有效的光诱导电荷分离如何在特定的C DNA序列中发生的,以及CT状态的寿命是否很长以使光化学反应很长。值得强调的是,CPD的高度有效的自我修复大大提高了特定序列的光稳定性,并被认为是从丰富的随机序列库中的原始RNA和DNA寡聚物的可能选择因子。1,15,36,37更重要的是,已经提出了紫外线作为核苷酸选择性益生元合成的关键能源之一。38 - 46这导致上述D和O核碱基作为与规范核酶相比,由于其改善的电子含量和CPD更换特性,因此将上述D和O核酶视为第一个信息聚合物的潜在组成部分。尤其是31,32,47,含有D核苷酸酶和T] T二聚体的DNA三核苷酸显示可修复CPD,当在280 nm处受照射时,产量达到92%,因此,D可以保护DNA在预防性的情况下将DNA低聚物保护在光电座上。