引言衰老的人口正在迅速增长,这给公共卫生和社会经济学带来了巨大的挑战。1根据世界卫生组织(WHO)的流行病 - 逻辑数据,老年人(超过60年)到2050年将占人口的11-22%。2衰老是所有慢性疾病的最高危险因素,例如心血管疾病,中风和阿尔茨海默氏病,这表明需要制定有效的健康衰老策略。3,4与基因操纵相比,靶向衰老细胞的治疗药物在治疗依从性方面具有独特的优势。但是,目前可用的策略主要是在早期研究阶段。细胞衰老在寿命和与衰老相关的多种疾病中起因作用。5细胞衰老被定义为细胞命运,其中增殖或分化细胞经历复制停滞并发展为纤维化或促炎性衰老相关的分泌表型(SASP)。6细胞衰老包括复制衰老和非复制性衰老。复制性衰老与细胞分裂的有限能力有关,与
非营利部门在促进卢旺达的经济发展和社会变革中起着至关重要的作用,尤其是在解决年轻妇女失业的紧迫问题方面。但是,非营利部门在赋予非洲经济权的能力,尤其是在卢旺达的贡献较少。本办公桌审查研究了非营利组织对卢旺达经济的多方面贡献,重点是他们在为年轻人创造尊严和充实的工作机会方面的作用。我们阐明了非营利组织促进卢旺达的青年就业的各种机制。审查调查了这些干预措施的有效性和可持续性,阐明了最佳实践和改进领域。该研究综合了来自各种报告,学术文章和政策文件的数据,以评估该部门对创造就业,技能发展和赋权的贡献。关键发现表明,非营利组织通过提供职业培训,支持企业家企业并倡导包容性劳动力政策来显着影响卢旺达经济。此外,该评论重点介绍了非营利组织在实现目标时面临的成功案例和挑战,并提供了对有效的战略和需要政策干预领域的见解。该分析强调了一个强大的非营利部门在解决青年失业和增强卢旺达经济包容性方面的重要性。
使用时间依赖性的哈密顿人对量子系统的控制对于量子技术至关重要[1],即实施状态转移和闸门操作。一个重要的任务是确定如何在此类过程中实现最佳性能。在理想的封闭量子系统中,完美的操作在足够的时间给定时间[2]。速度限制是因为物理哈密顿人的界限,因此能量时间不确定性给出了最大的时间进化速率,从而提供最小的操作时间。除了这种理想的情况之外,还会出现其他考虑。当无法进行精确控制时,人们的渴望是对可靠操作的渴望;这可以通过使用强大的控制技术[3]或绝热过程[4,5]来实现。另一个是变形和耗散的影响。在标准的马尔可夫近似中,这种过程会随着时间的流逝而导致信息丢失。因此,尽管有明显的例外,但人们期望将快速操作最小化,以最大程度地减少信息丢失,在这种情况下,操作较慢允许访问decherence-tree-note-nodspace [6]。在本信中,我们显示在非马克维亚系统中并不总是需要快速操作,因为较慢的操作可以使信息回流得到利用以提高忠诚度。为了提供非马克维亚系统中速度和保真度之间权衡的具体演示,我们使用数值最佳控制来探索由由驱动的Qubit与波音环境相互作用的系统的可实现性能。最佳控制[7]涉及确定一组时间依赖性的控制场,以最大化目标函数(例如保真度)。在这里,我们表明可以使用我们先前引入的过程张量方法[8]的扩展在非马克维亚系统中进行效率进行效率,以有效地计算客观功能的梯度。这使我们能够反复优化数百个控制参数,以用于不同的过程
摘要 - 增强学习(RL)已经证明了在空中机器人控制中的短期培训中保持政策可塑性的能力。但是,在非平稳环境中长期学习时,这些策略已显示出可塑性的丧失。例如,观察到标准近端策略优化(PPO)策略在长期培训环境中崩溃并导致重大控制绩效降级。为了解决这个问题,这项工作提出了一项成本吸引力的框架,该工作使用回顾性成本机制(ROCOM)与非固定环境平衡RL培训中的奖励和损失。使用奖励和损失之间的成本梯度关系,我们的框架动态更新了学习率,以在受干扰的风环境中积极训练控制政策。我们的实验结果表明,我们的框架在不同的风条件下学习了悬停任务的政策,而在可变的风条件下,与使用PPO的L2正则化相比,在可变风条件下的政策崩溃,休眠单位的休眠单位少11.29%。项目网站:https://aerialroboticsgroup.github.io/ rl-plasticity-project/
1.1 这项道路安全战略由达勒姆郡议会、达灵顿自治市议会(简称“议会”)、达勒姆警察局和达勒姆郡及达灵顿消防救援服务部门共同制定。它为维护和改善达勒姆郡和达灵顿的道路安全提供了交付框架。1.2 近年来,道路伤亡人数有所减少,这是值得欢迎的。然而,我们需要继续努力进一步减少道路伤亡。每一次死亡对家人和朋友来说都是一场悲剧。此外,严重的伤害可能会改变生活,对受害者及其家人和朋友的影响深远。1.3 道路伤亡的人员损失永远无法完全量化。然而,使用交通部的方法,我们可以计算出达勒姆郡和达灵顿道路伤亡的经济成本,估计每年为 1.2 亿英镑,这进一步表明减少道路伤亡势在必行。 1.4 此年度数据是根据交通部确定的每种道路伤亡分类的成本计算得出的:
关于达索系统:作为 3D 和产品生命周期管理 (PLM) 解决方案的全球领导者,达索系统为 80 个国家的 100,000 多家客户带来价值。自 1981 年以来,达索系统一直是 3D 软件市场的先驱,开发和销售 PLM 应用软件和服务,支持工业流程并提供从概念到维护再到回收的整个产品生命周期的 3D 视图。达索系统产品组合包括用于设计虚拟产品的 CATIA、用于 3D 机械设计的 SolidWorks、用于虚拟生产的 DELMIA、用于虚拟测试的 SIMULIA、用于全球协作生命周期管理的 ENOVIA 以及用于在线 3D 逼真体验的 3DVIA。达索系统在纳斯达克 (DASTY) 和巴黎泛欧交易所 (#13065, DSY.PA) 上市。欲了解更多信息,请访问 http://www.3ds.com
ITEA2 Eurosyslib:“通过先进的 Modelica 库在系统建模和仿真方面处于欧洲领先地位” Systematic CSDL:“复杂系统设计实验室” ITEA2 MODRIO:“模型驱动的物理系统操作” FP7 TOICA:“飞机热整体集成概念” CS2 MISSION:“系统的生态设计”/“飞机系统集成的建模和仿真工具” DGAC ExceLab:“扩展的协作工程实验室”
引言 在过去的几十年里,空军一直是所有危机或冲突中的第一军事力量,从福克兰群岛到海湾,从波斯尼亚到科索沃,从阿富汗到利比亚,以及最近的马里、中非共和国和伊拉克。军事航空无疑是当今最具战略意义的武器,无论是在战斗力方面还是在关键技术方面。在现代战争中,从第一天起就必须占据空中优势,这样才能安全有效地进行空对地和空对海作战。在非对称和反叛乱冲突中,空军也始终处于军事努力的最前线,其灵活性和火力有助于确保盟军获胜。9·11事件表明,在和平时期,必须使用易于部署的控制和防空资产来确保国家领空的安全。那些希望在世界舞台上保持领先地位的国家所制定的防御战略表明了空中力量在现代战争中的决定性地位。阵风战机具有“全能”能力,是越来越多政府选择的能力方法的正确答案。它完全符合以最少的飞机执行最广泛任务的要求。阵风战机参与永久性“快速反应警报”(QRA)/防空/空中主权任务、外部任务的力量投射和部署、深度打击任务、地面部队的空中支援、侦察任务、飞行员训练飞行和核威慑任务。空军单座型 RAFALE C、空军双座型 RAFALE B 和海军单座型 RAFALE M 具有最大程度的机身和设备通用性,以及非常相似的任务能力。
民用和军用飞机设计中都必须考虑俯冲速度稳定性。飞机越稳定,就要牺牲越多的性能。反之,性能更高的飞机天生就不太稳定。这就是为什么几乎所有设计巡航速度为 0.90 马赫、配备传统飞行控制装置的飞机都配备了大型垂直尾翼和水平稳定器。主要原因是需要满足国际适航认证机构规定的俯冲速度稳定性标准。但是如此大尾翼会带来阻力,从而牺牲燃料和航程。FEW 使达索能够为 7X 配备明显更小、阻力更低的尾翼,同时仍能满足监管的俯冲速度稳定性要求。例如,最大演示俯冲速度为 0.93 马赫,仅比 7X 的 0.90 马赫高出 0.03 马赫。如果没有 FEW,MMo 将被限制在 0.86 马赫,因为认证机构通常要求 0.07 马赫的缓冲。同样,当不受马赫限制时,最大演示俯冲速度为 405 节,仅比 Falcon 7X 的 370 节 VMO 速度高出 35 节。使用传统的灯光控制,Kerherve 估计 VDF 至少要达到 430 节才能验证相同的 VMO。简而言之,FEW 飞行控制提供的保护使飞机制造商能够提高最大巡航速度,同时与配备传统飞行控制的飞机相比,提供相同或更好的高速安全裕度。