组件。[1]它们由一个有机半导体薄膜组成,该薄膜在两个电极之间具有图案,即源和排水管。半导体薄膜与浸入栅极电极的电解质接触。通过应用栅极电压(V g),来自元素的离子进入半导体,改变其掺杂状态和电导率,进而改变了在源和排水量和排水管之间流动的电流(排水电流,I D)。[2]这种体积掺杂机制高度有效,导致i d发生巨大变化,以减少v g的小变化。结果,OECTS显示出非常高的转频(G M =∂Id /∂vG),这是控制信号弹药的参数。[3]但是,对于OECT的响应时间通常非常慢,因为离子必须穿透整个膜。[4]这种特征的组合使OECT适用于生物推导和大区域电子的某些领域,最著名的是可打印的电子产品。[1,5,6]
近年来,晶体管技术的进步使得人们能够设计出越来越复杂的集成电路。随着在降低功耗和提高性能方面取得的巨大成就,在考虑深度扩展技术时也面临着新的挑战。明显的工艺变异性、老化和辐射效应是经常出现的设计挑战,其重要性也日益增加 [1-5]。集成电路越来越容易受到单个高能粒子撞击的影响,可能会产生破坏性或非破坏性的影响。当粒子撞击触发 CMOS 电路中固有的 PNPN 结构中的寄生晶体管时,就会发生单粒子闩锁 (SEL),这可能会产生破坏性影响 [6]。当高能粒子从顺序逻辑元件撞击晶体管的敏感区域并沉积足够的电荷以扰乱电路时,单粒子翻转 (SEU) 会以位翻转的形式出现。此外,组合逻辑电路容易受到单粒子瞬态 (SET) 效应的影响,这种效应表现为粒子与处于关断状态的晶体管漏极电极相互作用产生的寄生瞬态电流。这并不是单粒子效应 (SEE) 的详尽列表 [7]。辐射加固设计 (RHBD) 技术已经开发出来,用于应对不同辐射条件下电子电路的辐射效应
半导体纳米结构对实施高性能热电发电机提出了很大的希望。的确,他们预计他们将提供降低的导热率,而不会在电导率上进行大量权衡,这是优化功绩热电图的关键要求。在这里,提出了一种新型的纳米式体系结构,其中用离子液体用作热构造栅极介电。这些设备允许在悬浮的半导体纳米线中对电运转运的现场效应控制,其中可以使用全电动设置同时测量热导率。可以合并有关在单个纳米版本上采用的电气和热传输特性的实验数据,以提取ZT,指导装置优化和热电性能的动态调整。
数十年来,由于摩尔法律[1],互补金属 - 氧化物半导体(CMOS)技术的连续扩展导致了信息技术的革命性发展,该法律规定,微芯片的密度每24个月增加了一倍。但是,由于由短通道效应等现象引起的泄漏电流,MOS场效应晶体管(MOSFET)会遇到限制[2]。尤其是由于载体的热极限,在室温下,子阈值秋千的极限为60 mV/dec [3]。使用隧道效应,使用影响电离的电离效果(i-MOS)[8-11]等各种设备,例如使用影响电离的电离MOS(I-MOS)[8-11] [12-24] [12-24] [12-24]使用反馈现象来克服这些限制。fbfet通过调节诸如p-n-p-n之类的结构中的潜在屏障,使用正反馈机制表现出陡峭的开关特性。第一次提出的FBFET通过将电荷捕获在栅极侧壁间隔物中来调节电势垒。然而,由于间隔区域的附加过程和不稳定性,已经提出了结构,以浓重的掺杂掺杂现有的间隔区区域,或用额外的栅极电极代替它[14,15]。这些结构相对稳定,可以在带有附加栅极电极的单个设备中重新配置p和n型[13]。但是,对于在P和N型操作模式中重新配置的四端设备结构的其他门电压调制是必需的。在这项研究中,我们提出了一个可重新选择的FBFET,可以通过控制单门电压调制来以P和N型模式进行操作。单门电压允许注射孔(P型)或电子(N型),以进行正反馈回路。与其他可重新配置的FET(RFET)[25-29]相反,该FET(25 - 29])通过阻碍注射不希望的荷载体,对电子和孔显示单极传导,可重新选择的FBFET使用电子和孔进行电流。因此,我们的设备表现出对P和N型配置的对称特征。
摘要 - 紧凑的功率电子电路和开关设备的较高操作温度要求对寄生组件在这些设备中的影响进行分析和验证。通过文献研究了氮化壳效应晶体管(GAN-FET)中发现的漂移机制,并与测量结果有关。极端温度条件下的测量值远远超出了制造商推荐的操作范围。研究了GAN-FET的静态和动态操作中对寄生元件的影响,并以半桥电路的示例与开关模式功率电子电线中的设备损耗有关。在本文中,进行了对温度对电阻,泄漏电流和反向传导的影响的静态操作研究。GAN-FET两种状态之间的动态操作也被解决,并且与开关导管损失的潜在影响有关。使用曲线示踪剂构建了一个热室,以精确测量设备中寄生元件的影响。发现,r ds的增量,i dss,i gss和v sd可以通过文献来证明,并通过测量来验证。增量c oss和降低V gs Th时,将设备暴露于极端温度时。这两个参数对在时间至关重要的高温下设计电路方面给人带来了真正的挑战。尽管温度调节,但发现所研究的GAN-FET具有在极端温度稳定条件下使用的潜力。
图 1 有机光电突触器件 . (a) 人类视网膜和大脑系统示意图 ; (b) 储池计算结构 ; (c) 提拉法制备有机薄膜示意图 ; (d) C 8 -BTBT 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (e) PDIF-CN 2 薄膜的光学显微镜图像 ( 标尺 : 100 μm); (f) C 8 -BTBT 薄膜的 AFM 图像 ( 标 尺 : 1.6 μm); (g) PDIF-CN 2 薄膜的 AFM 图像 ( 标尺 : 1.6 μm); (h) 具有非对称金属电极的有机光电突触晶体管器件结构 ; (i) 器件 配置为光感知型突触 ; (j) 器件配置为计算型晶体管 ( 网络版彩图 ) Figure 1 Organic optoelectronic synaptic devices. (a) The schematic diagram of human retina and brain system. (b) The architecture of a reservoir computing. (c) The preparation of organic thin films by dip coating method. (d) The optical microscope image of C 8 -BTBT film. Scale bar: 100 μm. (e) The optical microscope image of PDIF-CN 2 film. Scale bar: 100 μm. (f) The AFM image of C 8 -BTBT film. Scale bar: 1.6 μm. (g) The AFM image of PDIF-CN 2 film. Scale bar: 1.6 μm. (h) The schematic diagram of organic optoelectronic synaptic transistor with asymmetric metal electrodes. (i) The device is configured as a light-aware synapse. (j) The device is configured as a computational transistor (color online).
宾夕法尼亚州立大学 (PSU) 的研究人员在阿克利工程科学与力学教授 Saptarshi Das 博士的带领下,开发出了基于二维材料的高性能 p 型场效应晶体管 (FET)。这些晶体管是在《自然电子学》杂志上发表的一篇论文中介绍的,是通过一种制造策略创建的,该策略利用了两种二维材料(即二硒化钼 (MoSe 2 ) 和二硒化钨 (WSe 2 ))的掺杂和厚度控制。
在二维反铁磁半导体 CrPS 4 上实现的晶体管表现出大的磁导,这是由于磁场引起的磁状态变化。电导和磁状态耦合的微观机制尚不清楚。我们通过分析决定晶体管行为的参数——载流子迁移率和阈值电压——随温度和磁场的变化来确定它。对于接近尼尔温度 TN 的温度 T ,磁导源于由于施加的磁场导致的迁移率增加,从而降低了自旋涨落引起的无序。当 T << TN 时,变化的是阈值电压,因此在固定栅极电压下增加场会增加积累的电子密度。该现象通过导带边缘偏移来解释,该偏移是通过从头算正确预测的。我们的结果表明,CrPS 4 的能带结构取决于其磁状态,并揭示了一种以前未被发现的磁导机制。
原子位移的高阈值能量(Ed)[5]、点缺陷的动态退火[6]以及没有传统的栅极绝缘体[7],这些使得它们在辐射环境中也具有吸引力。GaN HEMT 中故意引起的应力场在整个通道中基本是均匀的。这可能是为什么局部应力的概念尚未在文献中研究的原因。另一个原因可能是局部应力的全局平均值很小;这似乎太小而无法影响任何特性。最后,以纳米级分辨率映射机械应力是一项艰巨的任务。所有这些因素使得 GaN HEMT 文献只能研究均匀应力场的作用。但是,关态偏置可能会在电场周围引起高度局部化的机械应力。[8] 器件制造和设计特征也会产生应力局部化。然而,目前还没有人齐心协力绘制机械应力的空间非均匀性图,以研究其对晶体管特性的影响。常用的实验技术,如悬臂[9]、三点弯曲[10]和四点弯曲[11],都无法捕捉到应力局部化。衬底去除[12,13]也用于产生均匀的弯曲应力。本研究的动机来自应力约束效应提供的识别易受辐射区域的机会。我们假设纳米级约束应力(机械热点)可能决定辐射损伤(甚至是操作性能下降)的特定位置成核。例如,HEMT 的栅极漏电被归因于促进肖特基接触金属化相互扩散的局部应力强度。[14]只有少数研究试图控制固有应力以显示对辐射效应的明显影响。 [15,16] 有必要将这些研究扩展到特定类型的辐射和压力。
和非结构化数据。[1,2] 在大脑中,信息储存在突触中,突触中有一个裂缝连接两个神经细胞(神经元)。 当输入刺激到达前神经元时,神经递质会从前神经元分泌出来,与后神经元上的受体结合,并调节离子传输通道(图 1a)。[3] 离子通过通道的动态通过激活/停用离子通透性通道的形成(即电导更新)在增强/减弱突触权重方面起着至关重要的作用。[3] 根据突触前刺激,突触权重会暂时维持或持续数分钟、数小时甚至更长时间,并可充当记忆状态。 开发一种通过类似离子的动力学更新电导的人工突触将非常接近地模拟生物突触的行为,并最终可以模拟各种生物神经操作。漂移忆阻器已经成功模拟了具有长期增强 (LTP) 和长期抑制 (LTD) 特性的电导更新,但本质上是随机的 [4] 并且需要额外的扩散元件来模拟离子动力学。[5] 3 端器件结构(例如晶体管)可以调节离子,因此是人工突触的有希望的候选者。[6–13] 电解质门控晶体管无需额外电路即可控制离子。[6,7] 然而,实现电解质门控晶体管的长期可塑性一直具有挑战性,主要是因为器件不稳定性(例如,接触处的寄生电化学反应引起)。[6–8] 铁电场效应晶体管 (FeFET) 提供了一种出色的器件架构,通过控制铁电栅极的极化来编程/擦除非易失性多电导状态,从而控制突触权重。 [9] 铁电栅极已用于调节 FeFET 的电导率,FeFET 采用各种半导体作为沟道材料,包括氧化铟镓锌 (IGZO) [9–11] 、二维材料 [12,13] 和聚合物。[42] 然而,用缺乏离子的半导体材料模拟离子动力学几乎是不可能实现的。因此,需要一种能够传导离子并保持其电子结构的沟道材料。金属卤化物钙钛矿半导体因其独特的离子-电子混合导电特性,是用于人工突触的有前途的材料。[14–16] 高迁移率、大扩散长度和长载流子寿命等显著的电子导电特性使得
