光子时间晶体(PTC)提供了一个全新的平台,该平台由于定期变化的电磁特性而显示出光波扩增。控制这种扩增的需求变得越来越重要,尤其是随着基于元表面的PTC实现的出现。这项工作引入了PTC中孤立的时间缺陷,以建立对扩增的新程度。我们发现,在存在缺陷的情况下,对于带盖的特定动量值(𝒌𝒌)的特定值伴随着对扩增量的显着影响,透射率和反射率接近统一。我们显示了时间缺陷对PTC周期强度指数增长的影响。效果主要取决于PTC的浮频频率,后者在𝒌𝒌时变为真实,从而产生四个脉冲,而不是两种作为间隙传播的结果。我们进一步证明,通过操纵缺陷的时间和介电特性,可以调节动量中的缺陷状态以为专业应用提供设计兴趣。
100 247.2 217.9 205.9 38.5 224.5 199.8 260 76.5 48.6 46.5 10.3 49.7 45.3 110 215.4 178.6 169.1 32.8 183.7 164.3 270 73.6 46.5 44.5 9.9 47.6 43.4 120 190.7 150.8 143.1 28.6 155.0 139.1 280 70.9 44.6 42.6 9.5 45.6 41.6 130 171.1 130.4 124 25.3 133.9 120.6 290 68.4 42.8 40.9 9.1 43.8 39.9 140 155.4 114.9 109.4 22.7 117.9 106.4 300 66.1 41.2 39.4 8.8 42.1 38.4 150 142.3 102.7 97.9 20.6 105.3 95.2 310 63.9 39.7 38 8.5 40.5 37 160 131.5 92.9 88.7 18.8 95.3 86.2 320 61.9 38.3 36.6 8.2 39.1 35.7 170 122.2 82.9 81.1 17.4 87.0 78.9 330 60.1 37 35.4 7.9 37.8 34.5 180 114.3 78.2 74.7 16.1 80.1 72.7 340 58.3 35.8 34.3 7.7 36.5 33.4 190 107.4 72.5 69.4 15.1 74.3 67.5 350 56.7 34.6 33.2 7.4 35.4 32.3 200 101.4 67.7 64.4 14.1 69.3 63 360 55.1 33.6 32.2 7.2 34.3 31.3 210 96.1 63.4 60.4 13.3 64.9 59.1 370 53.6 32.6 31.3 7.0 33.3 30.4 220 91.3 59.8 57 12.6 61.2 55.6 380 52.3 31.7 30.4 6.8 32.4 29.6 230 87 56.5 53.9 11.9 57.8 52.6 390 51 30.8 29.5 6.6 31.5 28.7 240 83.2 53.6 51.1 11.3 54.8 49.9 400 49.7 30 28.8 6.4 30.6 28 250 79.7 51 48.7 10.8 52.2 47.5
摘要:二维有机-无机卤化铅钙钛矿由于其光电特性(例如高太阳能转换效率和可见光区域可调的直接带隙)而引起人们的极大兴趣。然而,二维晶体结构中缺陷态的存在会影响这些特性,导致其带隙发射发生变化以及出现非线性光学现象。在这里,我们研究了缺陷态的存在对二维混合钙钛矿 (BA) 2 (MA) 2 Pb 3 Br 10 的非线性光学现象的影响。当两个脉冲(一个以 800nm 为中心的窄带泵浦脉冲和一个带宽为 800-1100nm 的超连续脉冲)入射到钙钛矿薄片上时,会发生简并四波混频 (FWM),其峰值对应于晶体中存在的缺陷态的能级。与非共振 FWM 过程中发生的虚拟跃迁相比,缺陷态的载流子寿命更长,这使得更多的电子能够被第二个泵浦光子激发,从而导致缺陷能级的 FWM 信号增强。随着薄片厚度的增加,双光子发光的猝灭现象也得到了观察,这归因于厚度较大时薄片内缺陷的存在增加。该技术展示了使用 FWM 检测晶体中缺陷能级的潜力,可用于各种光电应用。关键词:钙钛矿、非线性光学、材料、缺陷、荧光 ■ 简介
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
或CsCl 40已用于处理CsPbI 3 层以原位生长二维钙钛矿层作为电子阻挡层。 但单个电子阻挡层的性能提升仍然有限,需要新的策略。 在此,CsPbCl 3 QDs和二维Cs 2 PbI 2 Cl 2都沉积在CsPbI 3 钙钛矿层上以形成复合电子阻挡层。 首先,使用CsPbCl 3 QDs环己烷溶液将CsPbCl 3 QDs旋涂在CsPbI 3 钙钛矿层上。 然后,将CsCl乙醇溶液也旋涂在涂有QDs的CsPbI 3 钙钛矿层上以形成二维Cs 2 PbI 2 Cl 2。 这种结构形成了有利于电子阻挡的能级排列。此外晶体缺陷也得到有效钝化,CsPbI 3 C-PSCs的PCE由12.51%提升至16.10%。
锌离子电池(ZIBs)因其成本低、安全性高、资源丰富等特点而受到广泛关注。然而,到目前为止,寻找具有高工作电位、优异电化学活性和良好结构稳定性的正极材料仍然存在挑战。为了应对这些挑战,人们广泛研究了微结构工程来调节正极材料的物理性质,从而提高了ZIBs的电化学性能。本文主要集中于各种ZIB正极材料的微结构工程的最新研究成果,包括成分和晶体结构选择、晶体缺陷工程、层间工程和形貌设计。进一步讨论了ZIB正极性能对水性电解质的依赖性。最后,提出了ZIB正极材料微结构工程的未来前景和挑战。旨在深入了解微结构工程对Zn 2 +的影响
钻石的使用不仅限于珠宝。它被称为从重工业到半导体和其他前沿行业的各种技术的基本材料。Sumitomo Electric Industries,Ltd。在1970年代开始研究合成单晶钻石(Sumicrystal),并成功地成为了世界上第一个大规模生产钻石(照片1)。sumicrystal具有高硬度和高热电导率。此外,与天然钻石相比,我们的技术可以将晶体缺陷和错位降低到极低的水平。由于这些出色的特性,Sumicrystal已用于广泛的应用中,例如研磨轮,梳妆台,绘画模具,切割工具(1),钻头,末端磨坊,抛弃插入物和散布器。此外,Sumitomo Electric在1995年成功开发了无色的高纯度钻石。它已被用作各种光学组件和耐压窗户的材料。近年来,钻石中的NV-中心一直是超高灵感传感器的关注焦点
基础知识、机械行为、材料失效 晶体结构简介 – 配位数、原子填充因子、简单立方、BCC、FCC 和 HCP 结构、晶体缺陷 – 点、线、表面和体积缺陷、原子扩散:现象、菲克扩散定律;影响扩散的因素。机械行为:应力-应变图显示材料的延性和脆性行为、工程和真实应变、线性和非线性弹性行为和性能、塑性范围内的机械性能。刚度、屈服强度、偏移屈服强度、延展性、极限拉伸强度、韧性、滑移和孪生导致的单晶塑性变形、金属强化机制 断裂:I 型、II 型和 III 型、疲劳:疲劳载荷类型及示例、疲劳机制、疲劳性能、S-N 图、疲劳测试。蠕变:举例说明蠕变现象、蠕变的三个阶段、蠕变特性、应力松弛。断裂韧性的概念。