图 2. 所提出的光控编码元件的设计和特性。a) 元原子编码元件的详细结构,在 SiO 2 基板上构建了 1 μm 厚的金方块和 1 μm 厚的 GeTe 方块图案。b) 编码元件两种状态的示意图:状态“0”表示 GeTe 的非晶态(绝缘态),状态“1”表示 GeTe 的晶体(导电)态。c) 和 d) 两种状态下编码元件的相应反射特性(c 幅度和 d 相位)。e) GeTe 层表面电阻随温度的变化(双探针测量),显示两种状态下的电特性相差六个数量级以上,并且冷却至室温时晶体状态具有非挥发性行为。 f) 有限元模拟 GeTe 层在具有不同能量密度的 35 纳秒长单脉冲紫外激光照射下的温度上升情况:单脉冲的通量为 90 mJ/cm 2,将使最初为非晶态的 GeTe 的温度升至其结晶温度 ( TC ) 以上,而随后的 190 mJ/cm 2 激光脉冲将使 GeTe 的温度升至其局部熔化温度 TM 以上,并将材料熔化淬火回非晶态。下图是拟议的 1 比特元原子的配置和示意图
• 通过溅射或 MBE 在 bcc CoFe 或 Fe 磁性电极上,或在非晶态 CoFeB 电极上生长,然后进行退火以重结晶电极,从而形成质地非常好的 MgO 屏障。
● 增加表面粗糙度 ● 使用非晶态材料作为声子路径上的悬浮结构。 ● 在表面涂覆低转变温度超导膜(图)或普通金属作为声子海绵(PRB 96, 220501(R) (2017))。
发光碳等离子体的超快(5 纳秒)照片揭示了真空中激光蒸发石墨如何合成非晶态金刚石薄膜,这是一种透明、超硬的纯碳形式(见第56-58 页)。假彩色图像中显示的高能碳离子球以每秒 4,000,000 厘米的速度移动。当材料在室温下收集形成薄膜时,这种能量有助于将普通石墨转化为非晶态金刚石。这是 ORNL 1996 年的众多研究亮点之一,在本期《实验室状况》中介绍。门控增强 CCD 阵列摄影由 ORNL 固态部门的 David B. Geohegan 和 Alex A. Puretzky 完成。封面由Allison Baldwin,ORNL 计算、信息和网络部门的平面设计师。
相变材料 (PCM) 可以在结晶状态和非晶态之间快速可逆地切换,具有显著的光学和电子对比度。[1–3] 这些特性被广泛应用于电子非挥发性存储器 [4–7] 和纳米光子学等一系列设备中。[8–10] 在基于 PCM 的随机存取存储器 (PCRAM) 中,SET 操作通过结晶实现,RESET 通过熔融淬火非晶化实现。 可以对更复杂的操作进行编程,包括迭代 RESET 和累积 SET,对应于中间和部分结晶/非晶态,用于神经启发计算应用。[11–18] 伪二元 GeTe–Sb 2 Te 3 系列上的 Ge–Sb–Te (“GST”) 化合物 [19] 已得到广泛研究,旗舰化合物 Ge 2 Sb 2 Te 5 和 GeSb 2 Te 4 目前被用作
利用频域干涉法和从头算分子动力学研究了非晶态碲化锗薄膜对飞秒激光激发的亚皮秒响应。表面动力学的时间分辨测量揭示了薄膜的收缩,其介电性能响应速度超过 300 fs。非平衡条件下的系统从头算分子动力学模拟使我们能够检索离子温度从 300 K 到 1100 K 以及电子分布宽度从 0.001 eV 到 1.0 eV 的原子构型。通过深入分析角度分布、声子模式和对分布函数来表征结构的局部有序性,这证明了向新的非晶态电子激发态的转变,该激发态在键合/结构上接近液态。我们的研究结果为涉及两个重要过程的硫族化物材料中的光学高激发态提供了新的见解:存储器件中的相变材料和静态场引起的 Ovonic 阈值开关现象。
湿度是多晶硅微机械摩擦表面磨损的一个重要因素。我们证明,非常低的湿度会导致非常高的磨损,而可靠性不会发生显著变化。我们表明,产生的磨损碎片的量是空气环境中湿度的函数。随着湿度降低,产生的磨损碎片增加。对于较高的湿度水平,表面氢氧化物的形成可能起到润滑剂的作用。主要故障机制已被确定为磨损。磨损碎片已被确定为非晶态氧化硅。在低湿度水平下观察到的大碎片(长度约为 1 微米)也是非晶态氧化硅。使用透射电子显微镜 (TEM),我们观察到磨损碎片形成球形和棒状。我们比较了两种表面处理工艺:氟化硅烷链 (FTS) 和超临界 CO 2 干燥 (SCCO 2 )。在两种湿度水平下,使用 SCCO 2 工艺的微型发动机的可靠性低于使用 FTS 工艺发布的微型发动机。
摘要:硫族相变材料 (PCM) 在非挥发性的非晶态和结晶态之间具有很大的光学特性差异,引起了人们对其在长期接近零功耗的超紧凑光子集成电路中的应用的浓厚兴趣。然而,在过去十年中,PCM 集成光子器件和网络受到各种常用 PCM 本身巨大光学损耗的困扰。在本文中,我们重点研究了一种新兴低损耗相变材料 Sb 2 Se 3 在硅光子平台上的沉积、特性和单片集成。蒸发的 Sb-Se 薄膜的非晶相和结晶相之间的折射率对比度被优化到 0.823,而椭圆偏振法测得的消光系数保持小于 10 − 5。当集成在硅波导上时,非晶薄膜引入的传播损耗可以忽略不计。结晶后,磁控溅射Sb-Se贴片覆盖硅波导的传播损耗低至0.019 dB/µm,而热蒸发贴片覆盖硅波导的传播损耗低于0.036 dB/µm。
研究了不同 Ge 含量的 Ge-rich-Al 2 O 3 薄膜在热刺激下光学和结构特性的演变。发现无论 Ge 含量如何,沉积态薄膜和在 TA 550 C 下退火的薄膜都是非晶态的。非晶态 Ge 团簇在 TA = 550 C 时形成,而在 TA = 600 C 时它们的结晶化最为明显,Ge 含量越高,退火时间越短。在 TA = 550 C 下退火的薄膜显示出宽广的光致发光光谱。其形状和强度取决于 Ge 含量和激发能量。在 TA = 600 C 下退火会导致出现额外的 UV 带,这些带源自 GeO x 相覆盖的 Ge 团簇的形成。对激发光谱进行了分析,以区分这些薄膜中的发光机制,并区分 Ge 相(非晶团簇和/或纳米晶体)中载流子复合的贡献以及通过界面或宿主缺陷的贡献。还估算了自由载流子的浓度和迁移率。