• 为了通过应变诱导的 Stranski-Krastanov 过程自发形成外延 QD,QD 材料和势垒材料之间的晶格失配必须达到一定的最小值。 • 需要紧密排列的 QD,以便孤立 QD 中通常观察到的离散能级加宽以形成微带。还需要高密度的 QD 以实现充分的吸收。为了实现所需的高密度应变 QD,几乎肯定需要某种应变平衡的 QD 超晶格结构来防止形成晶格失配诱导的穿透位错。这些缺陷会导致高度的非辐射复合,从而降低设备性能。 • 还需要 QD 和势垒材料中的载流子寿命长,以实现有效的载流子提取。
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
必须充分利用它们的物理特性并成功实现器件,例如各种成功的 III-V 半导体器件 40,41 ——最终目标是外延和单晶生长。Sb2Te3(以及其他拓扑绝缘体,如 Bi2Te3 和 Bi2Se3)的外延膜已通过分子束外延工艺直接生长,29,30 该技术在批量生产中显示出其局限性。另一方面,化学气相沉积技术存在形态控制不佳的问题,我们专门研究了 MOCVD 在这方面的研究。 TI 生长中常用的衬底,例如 Si(100)、Si(111) 和 Al 2 O 3 (0001),与 Sb 2 Te 3 (以及一般的 TI) 存在明显的晶格失配,因此在存在旋转畴的情况下,会生长为取向性较差的多晶层 23,32 – 34 ,只有少数例外 42,43
在本文中,我们研究了外延 Ge/Si 层中拉曼模式的应变 - 声子系数的温度依赖性。为此,我们首先从理论上描述 b ( T ) 如何与材料弹性常数和声子波数的温度依赖性相关联。随后,我们分析了双轴应变场与 T 的关系,明确证明 ε ( T ) 可以分解为两个独立的贡献:(a) 外延应变,由于 Si ─ Ge 晶格失配(在特定温度下)引起,(b) 热应变,由 Ge 外延层和相对较厚的 Si 衬底之间的热膨胀系数 (CTE) 差异引起。最后,我们使用这些结果直接提取 150 – 450 K 范围内 Ge/Si 样品中的 b ( T ),通过比较 T 相关的 μ -Raman 测量与 T 相关的高分辨率 X 射线衍射实验 (HR-XRD),
多结太阳能电池设计既要考虑理论上的最佳带隙组合,也要考虑具有这些带隙的材料的实际局限性。例如,三结 III-V 多结太阳能电池通常使用 GaAs 作为中间电池,因为 GaAs 的材料质量近乎完美,尽管其带隙高于全局光谱的最佳值。在这里,我们使用具有出色电压和吸收率的厚 GaInAs/GaAsP 应变平衡量子阱 (QW) 太阳能电池来修改中间电池的带隙。这些高性能 QW 被整合到一个三结倒置变质多结器件中,该器件由 GaInP 顶部电池、GaInAs/GaAsP QW 中间电池和晶格失配的 GaInAs 底部电池组成,每个电池都经过了高度优化。我们在 AM1.5 全局和 AM0 空间光谱下分别展示了 39.5% 和 34.2% 的三结效率,这高于之前创纪录的六结器件。
摘要 III 族氮化物和β 相氧化镓(β -Ga 2 O 3 )是目前研究较为深入的两种用于电力电子的宽带隙半导体材料。由于两种材料体系之间的晶格失配度相对较小,且可以利用体相 AlN、GaN 和β -Ga 2 O 3 衬底,因此已经实现了在β -Ga 2 O 3 上外延生长 III 族氮化物或反之亦然。然而,将两种材料体系集成在一起来设计功率器件仍然缺乏。本文数值研究了 AlN/β -Ga 2 O 3 异质结构,利用极化诱导掺杂来实现高性能增强型晶体管。受 AlN/β -Ga 2 O 3 界面极化效应的影响,沟道中的二维电子气浓度最高可达 8.1 × 10 19 cm −3。在沟道顶部引入p-GaN栅极,最终实现了具有可调正阈值电压的常关型AlN/β-Ga 2 O 3场效应晶体管。此外,我们插入了非故意掺杂的GaN背阻挡层以抑制漏极漏电流。最后,为了实现高性能III族氮化物/Ga 2 O 3基功率器件,我们进一步研究和分析了具有不同结构参数的器件的传输和输出特性。
卤素空位的迁移是铅卤化物钙钛矿中相分离和材料降解的主要原因之一。在这里,我们使用第一性原理密度泛函理论来比较立方 CsPbBr 3 的块体和 (001) 表面溴空位的迁移能垒和路径。我们的计算表明,由于表面的软结构允许键长变化大于块体,因此表面可能促进溴空位在这些钙钛矿中的迁移。我们计算出表面轴向到轴向溴空位迁移的迁移能仅为块体值的一半。此外,我们研究了用四种不同的碱金属卤化物单层改性表面的效果,发现对于 NaCl 钝化系统,迁移势垒几乎增加到块体值。发现迁移势垒与 CsPbBr 3 表面和碱金属卤化物单层之间的晶格失配有关。我们的计算表明,表面可能在介导卤化物钙钛矿中的空位迁移方面发挥重要作用,这一结果与具有大表面体积比的钙钛矿纳米晶体有关。此外,我们提出了通过使用碱金属卤化物盐钝化来抑制这一不良过程的可行方法。
1 俄亥俄州立大学电气与计算机工程系,美国俄亥俄州哥伦布 43210。2 Lumileds LLC,美国加利福尼亚州圣何塞 95131。3 俄亥俄州立大学材料科学与工程系,美国俄亥俄州哥伦布 43210。*通讯作者:rahman.227@buckeyemail.osu.edu 摘要:我们展示了通过高效隧道结实现的低开启电压 P 向下绿光 LED。由于 (In,Ga)N/GaN 界面中的极化场排列具有 p 向下方向,与传统的 p 向上 LED 相比,电子和空穴注入的静电耗尽势垒降低了。具有 GaN 同质结隧道结的单个 (In,Ga)N/GaN 异质结构量子阱有源区在 20A/cm 2 时表现出非常低的 2.42V 正向工作电压,当电流密度高于 100 A/cm 2 时,峰值电致发光发射波长为 520 nm。底部隧道结具有最小的电压降,能够实现向底部 p-GaN 层的出色空穴注入。III 族氮化物半导体在光电子学和电子学 1-12 中的广泛应用具有重要的技术意义,并已广泛应用于照明和显示应用。虽然过去十年来,紫/蓝光发射波长范围内的 GaN 基发光二极管的效率和功率输出有了显着提高,但较长波长的发射器仍然表现出较低的效率。对于为更长波长设计的发射器,(In,Ga)N 量子阱中的铟摩尔分数会导致与更大的晶格失配、量子阱内的缺陷以及阱-势垒界面处更高的极化片电荷密度相关的挑战,所有这些都会导致器件性能下降。13-16
近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
进入门槛低。虽然经典的基于胶带的剥离方法易于学习,但在扩展方面受到严重限制。[1,2] 理想情况下,不仅应保持起始晶体的高质量,而且其横向尺寸也应反映在剥离产率中。在这里,金介导的剥离开始大放异彩,[3–8] 其中干净光滑的金表面提供了必要的相互作用,以剥离整个层状材料阵列。[4,5] 所得单层区域主要受母晶区域限制,接近 1 的剥离产率,从而允许大规模单层作用。[3,9–11] 这种相互作用本质上是非共价的,并且高度依赖于金表面的状况,即使是轻微的污染也会降低剥离产率。 [5] 最近,界面应变被认为是金介导剥离成功的另一个关键因素,通过破坏层间堆叠促进单层剥离。[12,13] 如前所述,将金的成功剥离扩展到其他贵金属被证明是困难的。[12] 以 MoS 2 为例,按照纯结合能论证,其他几种贵金属应该能够实现类似的性能。然而,金仍然无人能及,与下一个最佳竞争对手银相差两个数量级。[12] 其他金属(如铂、钯和铜)的表现甚至更差。[12] 这些金属性能不佳的原因是缺乏抗氧化性和金属贵重性降低。[12] 然而,银的表现优于铂和钯,使其成为所述趋势的异常值。这一例外是由于晶格失配导致 MoS 2 /Ag 界面处应变过大。不过,较大的应变分散暗示了应变不均匀,这是由于银界面的氧化造成的。很明显,成功的金属介导剥离的两个关键因素是均匀施加在界面上的大界面应变和无氧化物金属表面的清洁度。[5,12] 平衡这两个因素是高单层剥离产量的关键,迄今为止这对银来说很难做到。金通过高抗氧化性和在剥离前精心准备新鲜表面来实现这一点。获得适合此任务的金属表面的一种方法是模板剥离。[14,15] 使用热蒸发在光滑的模板(例如抛光硅晶片)上覆盖一层薄薄的金属层(≈ 200 纳米)。该膜可以通过