增材制造 (AM),也称为三维 (3D) 打印,是一种有效且稳健的制造结构化压电结构的方法,但大多数常用的打印技术往往面临固有的速度 - 精度权衡,限制了它们在制造具有微/纳米级特征的复杂部件时的速度。这里,配制了由化学功能化的压电纳米粒子 (PiezoNPs) 组成的稳定光固化树脂,通过微连续液体界面生产 (μ CLIP) 连续打印微尺度结构化 3D 压电结构,速度高达 ~ 60 μ ms -1 ,比以前报道的基于立体光刻的工作快 10 倍以上。 3D 打印功能化钛酸钡 (f-BTO) 复合材料显示,当 f-BTO 含量为 30 wt% 时,本体压电电荷常数 d 33 为 27.70 pC N -1。此外,在各种柔性和可穿戴自供电传感应用(例如运动识别和呼吸监测)中测试和探索了合理设计的晶格结构,这些结构表现出增强的可定制压电传感性能以及机械柔韧性。
摘要我们使用图形卷积神经网络(GCNN)来快速准确地预测固体溶液二元合金的总能量。gcnns允许我们抽象固体物质的晶格结构作为图,从而将原子建模为节点和金属键作为边缘。此表示自然结合了有关材料结构的信息,从而消除了对标准神经网络(NN)方法所需的计算昂贵数据预处理的需求。我们在Ab-Initio密度功能理论(DFT)上训练GCNN,用于铜金(CuAU)和铁铂(FEPT)数据,这些数据是通过运行LSMS-3代码而生成的,该数据实现了OLCF SuperCutisters titan and Immit的LSMS-3代码,该代码实现了本地自称的多重散射方法。gcnn在计算时间方面,按数量级胜过Ab-Initio dft模拟,以产生给定的原子结构的总能量的估计。我们通过使用根平方的误差来量化深度学习(DL)模型的预测质量,将GCNN模型与标准NN的预测性能进行比较。我们发现,GCNN的可达到的准确性至少比MLP的数量级好。
准晶体(QC)具有独特的晶格结构,具有传统晶体所禁止的旋转对称性。其电学性质尚待完全了解,而磁长程有序是否能在准晶体中实现一直是一个存在已久的问题。最大的困难是缺乏微观理论来分析晶体电场(CEF)对准晶体中稀土原子的影响。这里我们展示了对Tb基准晶体中CEF的完整微观分析。我们发现由CEF引起的磁各向异性对于在Tb原子所在的二十面体上实现独特的磁纹理起着关键作用。我们对基于磁各向异性的最小模型的分析表明,以拓扑电荷为1为特征的刺猬长程有序在Tb基准晶体中是稳定的。我们还发现旋转矩态以异常大的拓扑电荷3为特征。结果表明,通过控制三元化合物中非稀土元素的成分,可以改变磁性结构和拓扑状态。我们的模型有助于理解稀土基量子阱和近似晶体中的磁性和拓扑性质。
(1) ATG Innovation Ltd.,办公室 11 和 12 楼一号单元 8 单元,戈尔韦科技园,戈尔韦,H91PX3V,爱尔兰。电子邮箱:brendan.murray@atg-europe.com 关键词复合材料、晶格结构、附着物、不间断纤维铺放、圆柱体、卫星中心管、级间。摘要碳纤维增强塑料 (CFRP) 晶格卫星中心管 (SCT) 演示器设计为包括各种配置的集成层压板贴片,用于典型的 SCT 界面附着点。然后对基于这些设计的元件级附着样品进行广泛的面包板测试,以测试平面内、平面外和弯曲载荷配置,以验证晶格附着点的结构完整性。在进入全尺寸演示器的制造之前,使用测试在局部层面上验证预测方法,对样品的不同设计特点进行评估。测试结果表明,所有接口要求均得到满足,所有连接类型(除一种外)的预测失效负载均超过预期,从而凸显了当前晶格设计、建模和分析方法的总体保守性。这次成功的测试使演示器能够继续制造,并且对整体设计的预测行为充满信心。1. 简介
锌Blende和Wurtzite阶段:DFT研究B. Ahmed,B。I。Sharma * Assam University Silchar,788011,印度氮化铝(ALN)是宽带III-V组,Aln在三种不同的晶格结构中展出。在这项工作中,我们根据密度函数理论(DFT),以修改的BECKE-JOHNSON通用梯度近似(MBJ-GGGA)作为交换潜力,研究了岩石(RS),Zincblende(Zb)和Wurtzite(WZ)(WZB)和Wurtzite(WZ)(WZB)相的不同结构和电子特性。在本计算中获得的结构晶格参数和能量带隙与可用的实验值一致。结构计算表明,最稳定的相是wurtzite相,亚稳态相是锌蓝的相。发现Rocksalt,Zincblende和Wurtzite相中的Aln带gap分别为6.33 eV,4.7 eV和5.6 eV。在岩石和锌蓝岩相的情况下,带盖是间接的,在wurtzite相的情况下进行了直接。(2020年10月14日收到; 2021年2月2日接受))关键词:晶体结构,结构优化,密度功能理论,能量带隙,状态的密度
集吸音、高刚度和各向同性弹性于一体的多功能材料越来越受到多合一应用的追捧。然而,传统的微晶格超材料(无论是桁架、壳体还是板材)通常只在一种特性上表现出色,由于结构限制而难以兼具所有特性。本文提出了一种新的附加概念——通过交织不同的晶格结构来同时增强微晶格的吸音和弹性特性。交织设计策略首先分析特定结构,引入增强结构来划分空气域,补偿局部刚度不足,并提高结构完整性。作为概念验证,重点是使用八位组桁架作为原始相,使用定制桁架作为增强相。该方法可实现高度可定制的几何配置,利用机器学习和多目标优化来实现卓越的多功能性能。实验结果表明,这些优化的微晶格克服了传统的物理限制,同时实现了宽带吸声、高刚度和弹性各向同性。宽带吸收来自精细调节的过阻尼共振响应,而卓越的弹性性能则归因于高效的负载传递和互补配置。这项工作为创新的多功能材料揭示了一种突破性的设计范式。
抽象的陶瓷立体光刻或增值税光聚合是一个过程,允许制造具有高度复杂形状的陶瓷物体。晶格结构与高级优化拓扑工具一起使用,用于设计具有优化机械电阻的可打印轻质形状。如果这些晶格结构的机械电阻在聚合物状态下得到很好的控制,则在烧结阶段的高温下它们可以严重变形。应确定烧结过程中晶格结构的变形敏感性在概念阶段包括此方面。晶格的有限元(fem)烧结是一个有趣的解决方案,可以在数值上预测晶格的变形敏感性并确定其最小壁厚。这需要确定印刷绿色标本的烧结行为,并考虑到烧结各向异性,这涉及层之间的耐药性较弱。在这项研究中,烧结行为首先由多轴扩张法确定,并通过分析建模,然后通过FEM方法进行模拟。之后,进行了具有不同壁厚厚度的晶格的烧结模拟。这允许测试每个晶格壁厚的模拟工具可预测性,并比较其在高温下的变形灵敏度。
自适应变分量子模拟算法使用来自量子计算机的信息来动态创建给定问题汉密尔顿函数的最佳试验波函数。这些算法中的一个关键因素是预定义的运算符池,从中构建试验波函数。随着问题规模的增加,找到合适的池对于算法的效率至关重要。在这里,我们提出了一种称为运算符池平铺的技术,该技术有助于为任意大的问题实例构建问题定制的池。通过首先使用大型但计算效率低下的运算符池对较小问题实例执行自适应导数组装问题定制拟定变分量子特征求解器 (ADAPT-VQE) 计算,我们提取最相关的运算符并使用它们为更大的实例设计更高效的池。我们在这里对一维和二维的强相关量子自旋模型演示了该方法,发现 ADAPT 会自动为这些系统找到一个高效的拟定。鉴于许多问题(例如凝聚态物理学中出现的问题)具有自然重复的晶格结构,我们预计池平铺方法将成为一种适用于此类系统的广泛适用技术。
金属的印刷是增材制造(AM)增长最快的扇区1,因为它在设计后不久就可以制造其他操作的零件,同时最小化处理步骤1 - 4。在印刷金属时,零件的3D设计与制造软件结合在一起,以生成固体的金属零件。零件是以层的方式制成的,并使用各种热源和原料制成。航空航天,医疗保健,能源,汽车,海洋和消费产品工业都使用印刷金属零件2。此类部分的示例包括患者特异性金属植入物5,具有内部冷却通道6的涡轮叶片,发动机和涡轮机的歧管以及具有优化强度与重量比的晶格结构和桁架网络7。现在可以将许多先前需要组件的部分打印为单个单元3。AM还能够使用位点特异性化学成分和性质8。金属印刷1 - 3的主要变体,有向能量沉积(DED)或粉末床融合(PBF),因原料(粉末或电线)的类型和热源的类型而异,是激光(LASER(L),电子束(EB),Plasma Arc(Pa)或Ga Metal Arc(GMA)(图。1)。借助计算机,这些热源的运动是由该零件的数字定义指导的,这会导致金属以一层的方式融化,以构建
需要控制以定义设备性能的大小参数。第五组元素二晶曲是一种特殊的材料,在III - V材料生长8中既充当表面活性剂,又是许多量子材料中的组成部分。9从第一个原则计算中,众所周知,如果将BI纳入具有诱导非平地拓扑特性的其他III - V化合物频段Invers Invers Invers 10中,则基于III III-BI Alloys的组合。inas作为III - V半导体系统之一,以优于标准的基于SI的技术。这种化合物对于红外探测器,14个低功率电子15和量子计算具有很大的潜力。1 INA通常在锌混合物(ZB)结构中结晶,但也可以在低维结构中生长在Wurtzite(WZ)相。这为基于带隙异质结构16,17的探索和创建新型设备打开了大门,以及较低的临时和大气条件的敏感性。试图将BI纳入INAS晶格时,出现了18个困难。由INBI区域和INAS 10区域之间的较大的混乱差距是由各自的四方和立方晶格结构产生的,在散装材料的生长过程中会产生BI ADATOM的相位分离和群集。19