Grimani Catia 1.2 † , Fabi Michele 1.2 † , Sabbatini Federico 1.2 † , Villani Mattia 1.2 † , Calcagnile Lucio 3.4 , Caricato Anna Paola 3.4 , Catalano Roberto 5 , Cirrone Giuseppe Antonio Pablo 5 , Croci Tommaso 6.7 , Cuttone Giacomo 5 , Dunand Sylvain 8 , Frontini Luca 9 , Ionica Maria 6 , Kanxheri Keida 6.10 , Large Matthew, Liberali Valentino 9 , Martino Maurizio 3.4 , Maruccio Giuseppe 3.4 , Mazza Giovanni 12 , Menichelli Mauro 6 , Monteduro Anna Grazia 3.4 , Morozzi Arianna 6 , Moscatelli Francesco 6.13 , Pallotta Stefania 2.14 , Passeri Daniele 6.7 , 佩迪奥·玛德莲娜 6.13 , 佩塔塞卡·马可, 佩特林加·贾达 5 , 佩韦里尼·弗朗西斯卡 6.10 , 皮科洛·洛伦佐 12 , 普拉西迪·皮萨纳 6.7 , 夸尔塔·詹卢卡 3.4 , 里扎托·西尔维娅 3.4 , 斯塔比莱·阿尔贝托 9 , 塔拉蒙蒂·辛齐亚 2.14 , 惠顿·理查德·詹姆斯 12 , 维尔施·尼古拉斯 8
摘要:传统温度检测在传感精度和响应时间方面存在局限性,而基于热光效应的芯片级光电传感器可以提高测量灵敏度并降低成本。本文介绍了基于多晶硅(p-Si)波导的片上温度传感器,展示了双微环谐振器(MRR)和非对称马赫-曾德尔干涉仪(AMZI)传感器。实验结果表明,基于AMZI和MRR的传感器的灵敏度分别为86.6 pm/K和85.7 pm/K。本文提出的温度传感器与互补金属氧化物半导体(CMOS)制造技术兼容。得益于高灵敏度和紧凑的占地面积,这些传感器在光子电子应用领域显示出巨大的潜力。
a 捷克科学院物理研究所,Na Slovance 2, 18221 Prague 8,捷克共和国 b 查理大学数学与物理学院,V Holesovickach 2, Prague, CZ18000,捷克共和国 c 伯明翰大学物理与天文学院,伯明翰 B152TT,英国 d 国立微电子中心(IMB-CNM,CSIC),Campus UAB-Bellaterra,08193 Barcelona,西班牙 e 粒子物理研究所,IFIC/CSIC-UV,C/Catedr´atico Jos´e Beltr´an 2, E-46980 Paterna,瓦伦西亚,西班牙 f 约瑟夫·斯特凡研究所实验粒子物理系,Jamova 39,SI-1000 Ljubljana,斯洛文尼亚 g加利福尼亚大学圣克鲁斯分校,美国加利福尼亚州 95064 h 西蒙弗雷泽大学物理系,加拿大不列颠哥伦比亚省本那比市 8888 University Drive V5A 1S6 i TRIUMF,加拿大不列颠哥伦比亚省温哥华市 4004 Wesbrook Mall V6T 2A3 j 筑波大学纯粹与应用科学研究所,日本茨城县筑波市 Tennodai 1-1-1 305-8571 k 多伦多大学物理系,加拿大安大略省多伦多市 Saint George St. 60 M5S1A7 l 高能加速器研究组织 (KEK) 粒子与核研究所,日本茨城县筑波市 Oho 1-1 305-0801
1 捷克科学院物理研究所,Na Slovance 2,18221 布拉格 8,捷克共和国 2 查理大学数学与物理学院,V Holesovickach 2,布拉格,CZ18000,捷克共和国 3 伯明翰大学物理与天文学院,伯明翰 B152TT,英国 4 国立微电子中心(IMB-CNM,CSIC),UAB-Bellaterra 校区,08193 巴塞罗那,西班牙 5 粒子物理研究所,IFIC/CSIC-UV,C/Catedrático José Beltrán 2,E-46980 帕特尔纳,瓦伦西亚,西班牙 6 约瑟夫·斯特凡研究所实验粒子物理系,Jamova 39,SI-1000 卢布尔雅那,斯洛文尼亚 7 圣克鲁斯大学粒子物理研究所 (SCIPP)加利福尼亚大学圣克鲁斯分校,CA 95064,美国 8 TRIUMF,4004 Wesbrook Mall,温哥华,BC V6T 2A3,加拿大 9 西蒙弗雷泽大学物理系,8888 University Drive,本那比,BC V5A 1S6,加拿大 10 筑波大学纯粹与应用科学研究所,1-1-1 Tennodai,筑波,茨城 305-8571,日本 11 多伦多大学物理系,60 Saint George St.,多伦多,安大略省 M5S1A7,加拿大 12 高能加速器研究组织 (KEK) 粒子与核研究所,1-1 Oho,筑波,茨城 305-0801,日本 ∗ 主要作者,电子邮件:vera.latonova@cern.ch,† 替补演讲人,电子邮件:jiri.kroll@cern.ch
分析了世界半导体和多晶硅 (poly-Si) 市场的现状和前景。长期的低 PS 价格阻碍了行业投资的增长,现在价格已经恢复到具有投资吸引力的水平。分析了 2024 年及长期的供需平衡,并回顾了目前使用的主要 PS 工艺。预计目前的多晶硅市场能力将在近期和中期内保持不变。然而,各国政府宣布的能源行业“绿色转型”、本地市场的发展以及价格恢复到具有投资吸引力的水平,促进了新 PS 工厂项目的发展。对俄罗斯来说,选择西门子三氯硅烷工艺参数尤为重要。俄罗斯市场的一个特点是存在几个非常重要的领域(太阳能、微电子、大功率电子、光子学和光纤),这些领域按国际标准来看规模较小,同样面临原材料短缺。看来,俄罗斯将从提供多种原材料供应问题解决方案的综合项目中受益匪浅。
全息图是一种基石表征和成像技术,可以应用于从X射线到无线电波甚至中子等颗粒的完整电磁频谱。所有这些全息方法中的关键特性是通过干扰参考光束来提取相信息所需的连贯性 - 没有此,全息摄影是不可能的。在这里,我们介绍了一种基于本质上不连贯和非极化的光束的全息成像方法,因此可以从经典的干扰测量中提取任何相信息。相反,全息信息是按照纠缠状态的二阶相干性编码的。使用空间偏振超倾斜光子对,我们远程重建复杂物体的相位图像。信息被编码为纠缠状态的极化程度,使我们能够通过动态相位障碍,甚至在存在强经典噪声的情况下进行图像,并且与经典相干全息系统相比,空间分辨率增强。超出成像,量子全息量量化了10 4
液相结晶硅 (LPC-Si) 是一种自下而上的太阳能电池制造方法,有可能避免晶圆切片技术中的材料损失和能源使用。本文使用线形能源(即激光)结晶所需厚度的硅(5 – 40 μ m)。第一部分报告了优化非晶硅接触层以实现更好的表面钝化的努力。第二部分介绍电子接触上的激光环。它通过创建低电阻接触实现电荷收集和填充因子 (FF) 之间的可控权衡,同时在其他区域保留 a-Si:H (i) 钝化。观察到短路电流密度 (J SC ) 高达 33:1 mA cm 2 ,超过了该技术之前报告的所有值。开路电压 (V OC ) 高达 658 mV,也超过了之前在低体掺杂浓度 (1 10 16 cm 3 ) 下公布的所有值。激光环将 J SC 降低了 0.6 mA cm 2
由于高发射极掺杂的影响,传统发射极双极晶体管的电流增益受到限制。理论上,通过使用非常小的基极宽度和高发射极掺杂密度,传统发射极晶体管可以获得更高的增益。然而,增加发射极掺杂会降低带隙并增加少数载流子复合 [1]。结果是发射极注入效率降低,电流增益没有实际改善 [2]。增加发射极掺杂还会产生有害影响,降低发射极-基极击穿电压 (BVebo) 并增加发射极-基极结电容 [3]。与传统发射极相关的另一个问题是缩放。当发射极结深度低于 0.2 微米时,少数载流子扩散长度变得大于发射极,这进一步降低了电流增益 [4]。使用多晶硅作为发射极是避免这些问题的一种方法。
由于驱动电路占整个面板成本的 5-30%,因此单片集成尤为重要。直接在玻璃上制造驱动器,省去了传统的驱动器“安装”和“封装”步骤,简化了模块的组装,并大幅降低了模块组装设备成本。因此,组装产量增加,而且由于需要的外部互连更少,面板工艺产量和可靠性也得到提高。一旦建立了可靠、成熟的 LPS 工艺,人们就可以设想不仅集成 CMOS 驱动器,而且还集成一系列其他元素(控制器、内存、特定 IC)。有了这些,面板本身就变成了系统,引领夏普长期以来设想并积极追求的 SOP(面板系统)概念时代到来。
