I. 单晶:整个体积的长程有序。单晶或单晶固体是一种整个样品的晶格连续且不间断到样品边缘的材料,没有晶粒边界。(例如石英)。II. 多晶:晶粒内长程有序,但取向不同。多晶材料或多晶体是由许多大小和取向各异的微晶组成的固体。大多数无机固体都是多晶的,包括所有常见金属、许多陶瓷、岩石和冰。III. 几乎所有常见金属和许多陶瓷都是多晶的。IV. 如果存在短程有序,则为无定形。(例如玻璃)。在凝聚态物理学和材料科学中,无定形或非晶态固体是缺乏晶体特有的长程有序的固体。
大型有机铵离子的掺入使卤化物钙钛矿复合物的结晶动力学和层形成过程,难以控制,并导致抑制电荷转运的问题,并形成很小的晶粒。在本文中,在前体溶液中引入了氯化甲基(MACL)和过量的PBI 2作为共同辅助剂,以控制苯基甲基铵或苯甲酰胺或苯甲酰胺(PMA + SPACER)(PMA + SPACER)和基于基于fa +)基于fa +)的Quasi-2d pma 2d pma + 1 pba n i i。钙钛矿层的形成。通过这种方法,层的形态,内相分布和电荷传输特性得到改善。采用光泽放电光学光谱(GD-OES)和其他技术,据揭示了在共同添加剂存在下制备的准2D perovskites在整个过程中表现出均匀的溶剂清除动力学。此外,在热退火时,晶粒生长模式是侧向的。它产生了具有低陷阱状态密度和出色的底物覆盖率的大型,整体晶粒。尤其是,共同添加剂在结晶过程上改善了阳离子的分散,从而抑制了通过间隔阳离子的聚集形成的低N相并加速了高N期的形成。
研究了通过激光粉末定向能量沉积 (LP-DED) 制备的 Haynes 230 的微观结构和拉伸力学性能,沉积后在 900°C 至 1177°C 之间进行不同温度的热处理。采用扫描电子显微镜 (SEM) 进行微观结构分析,同时采用拉伸试验评估合金的室温力学性能。在沉积状态下,初始微观结构由细胞状 γ 和 M 6 C/M 23 C 6 碳化物组成。在 1177°C 下固溶 3 小时后,细胞区域似乎完全溶解。在沉积后热处理后,观察到碳化物沿晶粒边界以及晶粒内部沉淀和生长。在应力消除后在 1177°C 下固溶 3 小时可获得更好的延展性,对强度的影响微乎其微。关键词:激光粉末定向能量沉积、Haynes 230、微观结构、拉伸行为。
提出了未扎的和GD掺杂的CEO 2薄膜的制备,结构和光学特性的研究结果。使用聚合物前体旋转涂层方法,在单晶蓝宝石底物上获得了具有4–150 nm晶粒尺寸的密集胶片。提供了光学测量结果并与薄膜的微观结构相关。传输光谱已用于确定折射率N和灭绝系数的能量依赖性,k。薄膜的N和K随着晶粒尺寸的减少而减小,这些结果表明,这种变化可能与从晶体到无定形的CEO 2的过渡有关。与未掺杂的标本相比,掺杂剂对N,5%的影响很小,但掺杂量减少了K 30%–40%,这可能与由于GD更换CE导致的吸收中心的减少有关。©2002美国物理研究所。@ doi:10.1063/1.1430890#
完整作者列表: Slade, Tyler;西北大学,化学系 Grovogui, Jann;西北大学,材料科学与工程系 Kuo, Jimmy;西北大学,材料科学与工程系 Anand, Shashwat;西北大学,材料科学与工程系 Bailey, Trevor;密歇根大学,物理系 Wood, Max;西北大学,材料科学与工程系 Uher, Ctirad;密歇根大学,物理系 Snyder, G.;西北大学,材料科学与工程系 Dravid, Vinayak;西北大学,材料科学与工程系 Kanatzidis, Mercouri;西北大学,化学系
晶粒是微观固体颗粒,可以在温度和压力的值和压力的典型压力下凝结,后期型巨人和超级巨星的延伸大气的典型压力。它们在这些环境中的存在由许多红外光谱特征(例如,由于硅酸盐而导致的9.7 µm频带)指示,它们可以出现在红色巨人和超级巨人的光谱中。这些恒星的风负责将晶粒分布到星际介质中,随后它们可以通过原子积聚生长。星际颗粒或通常被称为灰尘,是使用星际培养基的重要组成部分。它们调节ISM的加热和冷却,充当H 2分子形成的催化剂,当然是造成星际灭绝的造成的,该过程会使全明星的光重新变红。
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
超导高熵合金(HEAS)是一类新型的超导体,具有电子设备的应用。在这里,我们研究了MO合金对具有组成(TANB)1- X(ZRHFTI)X mo y的高熵纤维超导性能的影响。对于近乎摩尔的组成,将晶粒晶粒转化为具有几纳米尺寸的大小的无定形聚集,形成了晶体/玻璃纳米复合材料。在晶体和无定形的HEAS中,成分原子均表现出均匀的分布。受熵影响的相地层抑制了HEAS中的超导转变,从而扩大了正常的超导过渡状态,并抑制了零耐抗性的临界温度至较低的恒定值约为2.9 K.
上下文。宇宙灰尘在天体物理环境中无处不在,在那里它显着影响化学和光谱。粉尘晶粒可能通过从气相上的原子和分子的积聚到它们上生长。尽管它们的重要性,但只有少数研究计算了相关温度和物种的粘性系数,以及它们对谷物生长的直接影响。总体而言,粉尘及其生长的形成尚不清楚。目标。这项研究旨在计算与碳质粉尘晶粒相互作用的各种气体物种,以计算广泛的温度范围内的粘性系数,结合能和晶粒生长速率。方法。我们用反应力场算法进行了分子动力学模拟,以计算准确的粘附系数并获得结合能。这些结果用于建立成核区域的天体物理模型,以研究尘埃生长。结果。我们首次介绍了H,H 2,C,O和CO的粘性系数,其温度为50 K至2250 K的温度。此外,我们估计了碳质灰尘中H,C和O的结合能,以计算热值速率。结合积聚和解吸使我们能够确定碳尘的有效积聚率和升华温度。结论。我们发现,粘性系数可能与天体物理模型中常用的系数有很大不同。这为我们提供了新见解,可以通过粉尘形成区域的积聚来对碳质粉尘颗粒的生长。