。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 3 日发布。;https://doi.org/10.1101/2025.02.03.636156 doi:bioRxiv 预印本
目的:前庭神经鞘瘤 (VS) 是一种罕见的良性脑肿瘤,通常采用伽玛刀放射外科 (GKRS) 治疗。然而,由于暂时性肿瘤增大 (TTE) 可能产生的不良影响,大型 VS 肿瘤通常通过手术切除而不是放射外科治疗。由于显微外科手术具有高度侵入性并且会显著增加并发症的风险,因此通常首选 GKRS。因此,预测大型 VS 肿瘤的 TTE 可以改善整体 VS 治疗,并使医生能够根据个体情况选择最优治疗策略。目前,尚无已知的临床因素可以预测 TTE。在本研究中,我们旨在使用从 MRI 扫描中提取的纹理特征来预测 GKRS 后的 TTE。方法:我们分析了在我们伽玛刀中心接受治疗的 VS 患者的临床数据。数据是前瞻性收集的,包括患者和治疗相关特征以及治疗当天和治疗后 6、12、24 和 36 个月的随访中获得的 MRI 扫描。使用统计检验研究了患者和治疗相关特征与 TTE 的相关性。从治疗扫描中,我们提取了以下 MRI 图像特征:一阶统计数据、Minkowski 函数 (MF) 和三维灰度共生矩阵 (GLCM)。这些特征被应用于机器学习环境中,用于使用支持向量机对 TTE 进行分类。结果:在包含 61 名明显非 TTE 患者和 38 名明显 TTE 患者的临床数据集中,我们确定患者和治疗相关特征与 TTE 没有任何相关性。此外,使用支持向量机分类,一阶统计 MRI 特征和 MF 没有显著显示预后价值。然而,利用一组 4 个 GLCM 特征,我们实现了 0.82 的敏感性和 0.69 的特异性,显示了它们对 TTE 的预后价值。此外,这些结果对于较大的肿瘤体积有所增加,对于大于 6 cm 3 的肿瘤,获得了 0.77 的敏感性和 0.89 的特异性。结论:本研究的结果清楚地表明,MRI 肿瘤纹理提供了可用于预测 TTE 的信息。这可以作为选择个体 VS 治疗的基础,进一步改善整体治疗结果。特别是对于 VS 较大的患者,TTE 现象最为相关,我们的预测模型表现最佳,这些发现可以在临床工作流程中实施,从而可以为每位患者确定最优的治疗策略。© 2020 作者。医学物理学由威利期刊公司代表美国医学物理学家协会出版。 [https://doi.org/10.1002/mp.14042]