编辑器:Stephan Stieberger本文为各向异性紧凑型恒星提供了一个新模型,该恒星在teparallear重力的背景下与物理暗物质相结合。该模型基于Bag模型类型的状态(EOS)和Bose-Einstein暗物质密度密度Prfile的方程。衍生的解决方案符合能源条件,因果关系条件以及稳定性因子和绝热指数所需的条件,表明它们在物理上表现良好,代表了身体和稳定的物质辅助。我们还确定表面的最大质量,表面红移和紧凑性参数。有趣的是,所有这些数字都属于规定的范围,支持我们提案的身体生存能力。此外,用于改变模型参数的各种质量对应于五个紧凑,逼真的紧凑对象,包括LMC X-4,她的X-1,4U 1538-52,SAX J1808.4-3658和CEN X-3。我们还说明了能量密度的径向对称pr和非旋转恒星的惯性矩。
摘要 本文包含 2019 年提交给 ESA 航行 2050 进程的白皮书的摘要,该白皮书随后发表在 EPJ Quantum Technol. 7、6 2020 上。我们在本白皮书中提出了一个太空实验的概念,使用冷原子来寻找超轻暗物质,并探测 LISA 和地面 LIGO/Virgo/KAGRA/INDIGO 实验最敏感范围之间的频率范围内的引力波。这个称为暗物质和引力探索原子实验 (AEDGE) 的跨学科实验还将补充其他计划中的暗物质搜索,并利用与其他引力波探测器的协同作用。我们举例说明了 AEDGE 对超轻暗物质的灵敏度范围扩大,以及其引力波测量如何探索超大质量黑洞的组装、早期宇宙中的一级相变和宇宙弦。AEDGE 将基于目前正在开发的使用冷原子进行地面实验的技术,并将受益于 LISA 和微重力冷原子实验等获得的太空经验。
我们概述了玻色子暗物质 (DM) 的基本量子描述,在极限 m ≪ 10 eV 时,传统的经典波图像由此出现。对于量子系统而言,我们从密度矩阵开始,该矩阵编码了有关我们可以对 DM 及其波动进行的可能测量的全部信息。根据量子光学的基本结果,我们认为对于 DM,密度矩阵最有可能采用相干态基础上的高斯显式混合形式。偏离此值将在 DM 可观测量中产生非高斯波动,从而可以直接探测 DM 的量子态。我们受量子光学启发的方法使我们能够严格定义和解释通常仅以启发式方式描述的各种量,例如相干时间或长度。该形式主义进一步通过波粒子跃迁提供了对 DM 的连续描述,我们利用它研究两个极限之间各种物理尺度上的密度波动如何演变,并揭示 DM 在波和粒子描述边界附近的独特行为。
祭坛,I。Buckanan,R。Bunker,B。Calkins,R。Calkins,R。Cameron,C。Carthreat,D。G。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J. K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。 街,H。Sun。Chang,M。Converth,J.-H。 R. Chen,N。Chott,H。Coombes,P。Cyna,St.Das,F。DeBritain,St.Dharan,M.L.Germond,M.Ghaith,St.R.Gwolwala,J.K. Harris,N。Hassan。 M. Lee,J。Leyva。 Michaud, E. Michelin, N. Mirabolfathy, M. Mirzakhani, B. Mohanty, D. Montiro, J. Nelson, H. Neog, V. Neogi, Federus, W. Peng, L. Perna, W. L. Perry, R. Podviianiuk, St. Sant Sant, A. Pradeep, M. Pyle, R. Reid, R. Reynolds, M. Rios, A. Roberts, A. Robinson,F。J. Sander,A。Sattari,B。Schmidt,R。W. Skorza,Scorza,B。Serfass,A。街,H。Sun。街,H。Sun。Young,T。C. Yu,B。Zatschler,S。Zatschler,A。Zaytsev,E。Zhang,L。Zheng,A。Zuniga和M. J. Zurowski
暗物质今天可能以超Heavy的复合状态的形式存在。这种暗物质状态之间的碰撞可以释放出强烈的辐射爆发,其中包括最终产品中的γ射线。因此,暗物质的间接检测信号可能包括非常规的γ射线突发。这样的爆发可能并不一定是因为它们的γ射线通量低,而是它们的短暂性和稀有性。我们指出,到目前为止,由于现有和计划中的设施可以在不久的将来检测到后者,其无探测是由于后者而引起的。尤其是,我们建议,通过轻微的实验调整和合适的数据分析,成像大气Cherenkov望远镜(IAIACTS)和脉冲全套近红外的近红外和光学搜索,以寻求外星智能(Panoseti)是可检测如此罕见的,简短而强烈的强烈爆发的有希望的工具。我们还表明,如果我们假设这些爆发源于暗物质状态的碰撞,那么IACTS和PANOSETI可以探测超出现有限制的大型暗物质参数空间。此外,我们提出了一种暗物质的混凝土模型,该模型在这些仪器中产生可能检测到的爆发。
1不列颠哥伦比亚大学的物理与天文学系,不列颠哥伦比亚大学,不列颠哥伦比亚省V6T 1Z1,加拿大2 Triumf,不列颠哥伦比亚省V6T 2A3,加拿大3,加拿大3物理系,多伦多大学,多伦多大学,多伦多大学,多伦多,安大略省M5S 1A77,加拿大4 Deparivefiísicadefísicicicatehoma,deririririric,pecansica tehoma,deririririricriririric,Iddad nord de.马德里,西班牙5个InstitutodefísicaTeóricaUam-CSIC,校园,坎多布兰科校园,28049,马德里,西班牙6号,6迪勒姆大学,达勒姆大学,达勒姆大学,达勒姆DH1 3LE,英国7 SLAC国家加速器实验室 /卡夫利粒子粒子和自然公园,北科学杂志, 360 Huntington Avenue,马萨诸塞州波士顿,美国92115,美国9太平洋西北国家实验室,华盛顿州里奇兰市,华盛顿99352,美国10物理学和天文学系,以及米切尔基本物理和天文学研究所美国科罗拉多州丹佛大学物理学,美国13美国13,美国斯坦福大学,加利福尼亚州斯坦福大学物理系94305,美国14号南部卫理公会大学,德克萨斯州达拉斯75275,美国15美国加利福尼亚大学,加利福尼亚州伯克利大学教育学院。 JATNI 752050,印度17号物理与天文学系西北大学,伊利诺伊州埃文斯顿,伊利诺伊州60208-3112,美国18号,南达科他州矿业与技术学院,南达科他州拉皮德城57701,美国19号9,1039区域道24号,萨德伯里,安大略省P3Y 1N2,加拿大20物理学和天文学学院,明尼苏达州明尼苏达州明尼苏达州55455,美国21 d。 Karlsruhe技术研究所(KIT),76344德国Eggenstein-Leopoldshafen,德国23Institutfür实验性菲西克,汉堡大学,22761汉堡,德国,德国24年汉堡,24物理学系 19282, United Arab Emirates 26 Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA 27 Laurentian University, Department of Physics, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada 28 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 29 Department of Electrical Engineering, University of科罗拉多州丹佛,丹佛,科罗拉多州80217,美国30,南达科他大学,南达科他大学,南达科他州57069,美国31劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国32,美国32,美国圣克拉拉大学,加利福尼亚州圣克拉拉,
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。