https://news.fnal.gov/2019/11/admx- perveriment-plass-places-worlds-best-best-best--ondaind-on-dark-matter-axions/https://news.fnal.gov/2019/11/admx- perveriment-plass-places-worlds-best-best-best--ondaind-on-dark-matter-axions/
1明尼阿波利斯大学,明尼苏达州明尼苏达州55455,美国2约翰内斯塔省大学25128 Mainz,德国55128 3 Helmholtz-institute,GSI Helmholtzentrum fur Schwerionenforschung intericiaia for Intriciai, ,加利福尼亚州伯克利,94720-7300,美国5加利福尼亚州立大学 - 加利福尼亚州海沃德市东湾94542东湾,美国6,波士顿大学,马萨诸塞州波士顿大学02215,美国波士顿大学02215,美国7 7号电气和计算机工程系马萨诸塞州02215,美国9号物理与天文学学院,南安普敦大学,南安普敦SO117 1BJ,英国10 istituto di fotonica e nanotecnologiei ifn - CNR,CNR,CNR,38123 POVO,38123 POVO,TRENTO,TRENTO,TRENTO,ITALY 11 FONDALYE BRUNOO KESSLO(ITAZIONE BROUNO)123 3812222381238128812881288112388112881128811 pEROSE&3812888812。 A*Star量子创新中心(Q.INC),材料研究与工程研究所(IMRE),
编辑器:Stephan Stieberger本文为各向异性紧凑型恒星提供了一个新模型,该恒星在teparallear重力的背景下与物理暗物质相结合。该模型基于Bag模型类型的状态(EOS)和Bose-Einstein暗物质密度密度Prfile的方程。衍生的解决方案符合能源条件,因果关系条件以及稳定性因子和绝热指数所需的条件,表明它们在物理上表现良好,代表了身体和稳定的物质辅助。我们还确定表面的最大质量,表面红移和紧凑性参数。有趣的是,所有这些数字都属于规定的范围,支持我们提案的身体生存能力。此外,用于改变模型参数的各种质量对应于五个紧凑,逼真的紧凑对象,包括LMC X-4,她的X-1,4U 1538-52,SAX J1808.4-3658和CEN X-3。我们还说明了能量密度的径向对称pr和非旋转恒星的惯性矩。
上下文。原始黑洞(PBHS)已被提议作为暗物质(DM)的潜在候选者,并近年来引起了显着关注。目标。我们的目标是深入研究PBH对气体性质的明显影响及其在塑造宇宙结构中的潜在作用。特别是,我们旨在分析不断发展的气体特性,同时考虑具有不同单色质量和不同数量的PBHs的存在。通过研究这种积聚产生的反馈效果,我们的最终目标是评估PBHs作为DM候选者的合理性。方法。我们开发了一个半分析模型,该模型在Z〜23。该模型可以对PBHS影响的气体的演变进行全面分析。我们的重点在于温度和氢丰度,并特别强调最接近光环中心的区域。我们探索位于质量窗口内的1、33和100m⊙的PBH质量,其中大量DM可能以PBH的形式存在。我们研究了由这些PBH组成的各种DM级分(F PBH> 10-4)。结果。我们的发现表明,由于气体特性中引起的显着变化,将排除质量为1m⊙的PBH和大于或等于10-2的PBH。同样,质量为33 m⊙和100 m⊙,而分数大于10-3。这些效应在距离光环中心最近的区域特别明显,可能导致晕空间内的星系延迟形成。
我们提出了一种新方法,借助量子干涉显著提高基于量子比特的暗物质探测实验中的信号速率。各种量子传感器都具有探测波状暗物质的理想特性,而量子计算机中常用的量子比特是暗物质探测器的绝佳候选。我们证明,通过设计适当的量子电路来操纵量子比特,信号速率与 n 2 q 成比例,其中 nq 是传感器量子比特的数量,而不是与 nq 成线性关系。因此,在使用大量传感器量子比特的暗物质探测中,可以预期信号速率会显著增加。我们提供了一个量子电路的具体示例,该电路通过连贯地组合每个单独量子比特由于其与暗物质相互作用而产生的相位演变来实现这种增强。我们还证明该电路对失相噪声具有容错能力,失相噪声是量子计算机中的关键量子噪声源。这里提出的增强机制适用于各种量子计算机模式,只要与增强暗物质信号相关的量子操作可以应用于这些设备。
摘要 本文包含 2019 年提交给 ESA 航行 2050 进程的白皮书的摘要,该白皮书随后发表在 EPJ Quantum Technol. 7、6 2020 上。我们在本白皮书中提出了一个太空实验的概念,使用冷原子来寻找超轻暗物质,并探测 LISA 和地面 LIGO/Virgo/KAGRA/INDIGO 实验最敏感范围之间的频率范围内的引力波。这个称为暗物质和引力探索原子实验 (AEDGE) 的跨学科实验还将补充其他计划中的暗物质搜索,并利用与其他引力波探测器的协同作用。我们举例说明了 AEDGE 对超轻暗物质的灵敏度范围扩大,以及其引力波测量如何探索超大质量黑洞的组装、早期宇宙中的一级相变和宇宙弦。AEDGE 将基于目前正在开发的使用冷原子进行地面实验的技术,并将受益于 LISA 和微重力冷原子实验等获得的太空经验。
• 对于超轻的 m << 30 eV,占有率 NdB 非常大,以至于粒子最好用经典波来描述 • 就像电磁一样,具有大量光子的状态可以用经典 EM 场来描述。 • 它将由质量低至 𝟏𝟎 !𝟐𝟐 eV(粗略下限)的极轻标量粒子组成:德布罗意波长 λ ∼ 1kpc:影响结构形成。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
由于在较高的质量范围内缺乏任何检测信号,因此在直接检测实验的下一个前沿中出现了轻暗物质质量状态。在本文中,我们提出了一种新的检测材料,即一块石墨烯的双层堆栈来检测Sub-Mev暗物质。其电压可调的低能亚ev电子带隙使其成为轻质暗物质搜索实验的检测器材料的绝佳选择。我们使用随机相位近似计算其介电函数,并估计对亚M-EV暗物质电子散射和SUB-EV暗物质吸收的预测灵敏度。我们表明,双层石墨烯暗物质检测器可以像其他候选目标材料一样具有竞争力敏感性,例如超导体,但在这种大规模状态下具有可调阈值。双层石墨烯中的暗物质散射速率也以地球旋转的每日调制为特征,这可能有助于我们在将来的实验中减轻背景。我们还概述了检测器设计概念,并提供了可以在将来设置实验的噪声估计值。