OPEN MIND 是首批攻克 5 轴加工技术的 CAM 制造商之一,并且仍然是全球领先的独特创新 5 轴 CAM 策略开发商之一。这种专业知识以及与知名机床、切削工具和工业制造商的密切合作促进了 hyper MILL ® CAM 解决方案的不断发展。hyper MILL ® 具有广泛的强大 5 轴策略,可用于对最具挑战性的几何形状、自由曲面和深腔进行粗加工和精加工。
自动纤维铺放 (AFP) 已成为航空航天工业中复合材料的流行加工技术,因为它能够在制造复杂部件时将预浸料或胶带精确地放置在准确的位置。本文介绍了用于复合材料飞机机身蒙皮制造的 AFP 心轴的设计、分析和制造。根据设计要求,开发了 AFP 心轴,并通过有限元法进行了数值研究。考虑了心轴结构自重和来自 AFP 机头的 2940 N 负载,进行了线性静态载荷分析。还进行了模态分析以确定心轴的固有频率。这些分析证实了所提出的心轴符合设计要求。然后制造了一个原型心轴并用于制造复合材料机身蒙皮。对 AFP 机身蒙皮曲面层压板、等效平面 AFP 和手工铺层层压板进行了材料载荷测试。平面 AFP 和手工铺层层压板在拉伸和压缩方面表现出几乎相同的强度结果。与手工铺层相比,平面 AFP 层压板的拉伸模量高 5.2%,压缩模量低 12.6%。AFP 曲面层压板的极限抗压强度比平面层压板高 1.6% 至 8.7%。FEM 模拟预测的强度比平面层压板测试结果的拉伸强度高 4%,压缩强度高 11%。
摘要:混合制造机床通过在同一台机床上结合增材制造 (AM) 和减材制造 (SM) 工艺,具有革新制造业的巨大潜力。从 AM 到 SM 时可能出现的一个突出问题是,SM 工艺刀具路径没有考虑由前一个 AM 步骤引起的几何差异,这会导致生产时间增加和刀具磨损,尤其是在使用基于线的定向能量沉积 (DED) 作为 AM 工艺时。本文讨论了一种使用机上接触探测近似零件表面拓扑并使用表面拓扑近似制定优化 SM 刀具路径的方法。使用了三种不同的几何表面近似:三角形、梯形和两者的混合。使用每种几何近似创建 SM 刀具路径,并根据三个目标进行评估:减少总加工时间、降低表面粗糙度和降低切削力。还研究了优化目标的不同优先级方案。确定在优化中产生最大改进的最佳曲面近似是混合曲面拓扑近似。此外,结果表明,当优先考虑加工时间或切削力优化目标时,其他优化目标的改进很小。
奇异光学与激光散斑 (SIN) 衍射、自由曲面和自适应光学 (DFA) 光学材料 (MAT) 集成光学电路和器件 (IOC) 光学仪器、制造和计量 (IFM) 光学系统设计 (DES) 光源和照明工程 (SIE) 微波和太赫兹光子学 (MWT) 激光应用和光束光学 (LSB) 超快光学 (UFO) 理论、建模和仿真 (THM) 量子信息 (QI) 成像和超分辨率 (ISR) 任何其他与光学和光子学 (OTH) 相关的主题
虽然这些技术可以在调制光束中实现高空间分辨率以及生成静态和动态光模式,但它们通常需要高度复杂的光学元件。这最近将注意力转向了折射自由曲面光学元件,它可以通过简单而坚固的装置将光源的强度分布重新分配为任意预定模式,其中至少一个表面相对于垂直于元件主平面的轴没有平移或旋转对称性。[10] 自由曲面光学元件的表面可以精确设计以产生所需的强度模式,[11] 将所涉及的几何形状定义为球面或非球面透镜的总和,或通过 Q 多项式描述和非线性偏微分方程。[10,12] 该方法的优点包括相关系统小型化、视场更宽和成像分辨率更高。 [2,13,14] 通常需要多种制造技术,包括磨削、抛光和超精密车削,[15,16] 这些技术非常耗时、成本高、通用性差,因此无法快速实现自由曲面光学系统,也无法通过外部门改变其特性。 3D 打印技术可以提供替代的制造方法,可以生成具有前所未有复杂几何形状的物体。[17–19] 3D 打印包含多种工艺,可使用不同材料制造非常规结构。[20–22] 在光学和光电子领域,增材制造已经用于生产非球面透镜、微光学元件、波导、光子晶体、发光二极管 (LED)、探测器和传感器。 [19,23,24] 尽管 3D 打印具有光学质量和亚微米分辨率的宏观物体仍然具有挑战性,[25] 但已经提出了许多方法来提高可实现的精度、打印速度和打印物体的尺寸。[26–28] 重要的是,一些应用可能会利用从质量较低的表面生成的光图案,利用 3D 打印技术提供的设计灵活性和定制性。一个相关的例子是加密标签,[29,30] 人们非常希望能够用肉眼或低成本扫描仪识别生成的光图案,而无需笨重的光学元件和复杂的光学系统。[31,32]
本课程为计算机图形学提供了理论和实践基础。它广泛概述了计算机图形学各个方面所使用的主题、技术和方法,但重点关注图像合成或渲染。课程的第一部分使用光线追踪作为驱动应用程序来讨论计算机图形学的核心主题,从矢量代数一直到采样理论、人类视觉系统、采样理论以及样条曲线和曲面。第二部分使用光栅化方法作为驱动示例,介绍相机变换、裁剪、OpenGL API 和着色语言以及高级技术。
图4:管道生产的工作台场景,以评估注册和掩盖精度。分别通过细绿色和蓝色线条显示了自由表面的白色和曲面。ASL体积脑面膜轮廓显示在洋红色中。白色盒子表示ASL获取的视野,转变为ASL网格的T1W空间。青色线(在矢状视图中在小脑的底部看到)表示位于视野外的ASL脑面膜的一部分。Greyscale中的基本图像是完整335
摘要:为了调查受到平面应变压缩(PSC)(PSC)的岩石标本中关键作用的破坏效应,设计了岩石标本中的五种内部曲线,并根据离散元素(DEM)进行了两个岩性的PSC测试,并对两个岩性进行了12个PSC测试。根据断裂模式,数据特征和裂纹演变分析结果。结果指示以下内容。(1)在PSC下具有关键填充的岩石样品显示出弱面剪切断裂模式,该模式受到岩性,填充角和填充表面方向影响。(2)PSC下岩石的轴向应力有四个临界膨胀点(CEP),这是从局部损伤到完全断裂的岩石材料的阶段迹象。进一步提出了岩石容量指数(RockBCI)。(3)带有水平填充的岩石样品的轴承能力,其角度与断裂表面一致的曲面以及表面垂直于横向侧面方向的曲面是最坏的;发现他们的BCI 2值分别为80.6%,70.8%和56.9%的岩石样品,分别没有任何填充。鉴定并分析了PSC下延迟的断裂情况。(4)裂纹的演变遵循了统一的定位法,岩石中的发现改变了裂纹发育的方式以及裂纹簇的加深和连接的路径,并影响了从损害到崩溃的时间过程。这项研究创新研究了岩石样品在PSC下具有填充性的行为特征,并在定性和定量上分析了岩体质量从局部损伤到断裂的轴承能力。