最近的研究表明,变压器可以通过模仿现有的RL算法来执行内在的增强学习(RL),从而使样本有效的适应能够适应无参数更新而无需看到的任务。但是,这些模型还继承了它们模仿的RL算法的次优行为。由于这些算法采用的逐渐更新规则,因此出现了此问题。基于模型的计划通过允许模拟在采取行动之前模拟潜在结果,提供了一种额外的机制来偏离次优行为,从而为这种限制提供了有希望的解决方案。我们没有学习Sepa-Rate Dynamics模型,而是提出了基于信用的RL框架(DICP)的蒸馏(DICP),在其中,变压器同时学习环境动力学并改善策略,并在内部进行改善。我们评估了跨多种离散和连续环境(包括暗室变体和元世界)的DICP。我们的结果表明,与基准相比,DICP可以达到最先进的性能,同时需要的环境相互作用要少得多,基本线包括无模型的对应物和现有的Meta-RL方法。该代码可在https://github.com/jaehyhyeon-son/dicp上获得。
可解释性是文本分类在许多应用领域(从情绪分析到医学诊断或法律审查)的关键要求。现有方法通常依靠“注意力”机制来解释分类结果,方法是估计输入单元的相对重要性。然而,最近的研究表明,这种机制往往会在解释中错误识别不相关的输入单元。在这项工作中,我们提出了一种人机混合方法,将人类原理纳入基于注意力的文本分类模型,以提高分类结果的可解释性。具体来说,我们要求工人通过选择相关的文本片段来提供注释的理由。我们引入了 MARTA,这是一个贝叶斯框架,它共同学习基于注意力的模型和工人的可靠性,同时将人类原理注入模型训练中。我们推导出一种基于变分推理的原则性优化算法,该算法具有用于学习 MARTA 参数的有效更新规则。对真实数据集的广泛验证表明,我们的框架在分类可解释性和准确性方面都显著提高了最先进的水平。
我们提出一个离散的信息基底作为基础层,时空结构、标准模型规范对称性、黑洞熵、全息对偶性和综合复杂性度量由此产生。我们将基底构建为具有明确定义的局部更新规则的四维晶格系统。通过使用重正化群 (RG) 分析系统,我们证明了洛伦兹不变性可以在低能量下出现。通过将基态表示为张量网络,我们将出现的大尺度几何连接到全息对偶,从而重现纠缠熵的 Ryu-Takayanagi 公式。离散视界上的组合微态计数得出贝肯斯坦-霍金黑洞熵定律。此外,我们定义了一个与综合信息理论的 Φ 一致的综合复杂性度量,将复杂性定义为底层因果结构的突发属性。特殊极限重现了已知的理论,例如圈量子引力 (LQG) 和因果集理论,强调这些框架是更基本基础的涌现现象。最后,我们讨论了哥德尔不可判定性和认识论极限,它们是复杂的涌现行为的自然结果。这项工作将涌现定位为将基础物理学的多个方面编织在一起的统一概念。
摘要 - 检测恶意攻击的网络入侵检测系统(NID)继续面临挑战。NID通常是离线开发的,而它们面临自动生成的端口扫描尝试,从而导致了从对抗性适应到NIDS响应的显着延迟。为了应对这些挑战,我们使用专注于Internet协议地址和目标端口的超图来捕获端口扫描攻击的不断发展的模式。然后使用派生的基于超图的指标集来训练集合机学习(ML)基于NID的NID,以高精度,精确和召回表演以高精度,精确性和召回表演以监视和检测端口扫描活动,其他类型的攻击以及对抗性入侵。通过(1)入侵示例,(2)NIDS更新规则,(3)攻击阈值选择以触发NIDS RETRAINGE RECESTS的组合,以及(4)未经事先了解网络流量本质的生产环境。40个场景是自动生成的,以评估包括三个基于树的模型的ML集成NID。使用CIC-IDS2017数据集进行了扩展和评估所得的ML集合NIDS。结果表明,在更新的nids规则的模型设置下(特别是在相同的NIDS重新培训请求上重新训练并更新所有三个模型),在整个仿真过程中,提出的ML集合NIDS明智地进化了,并获得了近100%的检测性能,并获得了近100%的检测性能。
深度学习已重新定义了人工神经网络的兴起,这是受到大脑神经元网络的启发。多年来,AI和神经科学之间的这些相互作用为这两个领域带来了巨大的好处,从而使神经网络可以在大量应用中使用。神经网络使用反向分化的有效实现,称为反向传播(BP)。然而,这种算法通常因其生物学上的不可使用性而受到批评(例如,缺乏众议员的本地更新规则)。因此,越来越多地研究了依靠预测性编码(PC)的生物学上合理的学习方法,即描述大脑中信息处理的框架。最近的著作证明,这些方法可以将BP近似于多层感知器(MLP)的一定余量,并在任何其他复杂模型上均非渐近,并且PC的变量零差异推理学习(Z-IL)能够准确地在MLP上实现BP。然而,最近的文字还表明,尚无生物学上合理的方法,可以准确地复制BP在Complex模型上的重量更新。为了填补这一空白,在本文中,我们通过在计算图上直接定义它来概括(PC和)Z-IL,并表明它可以执行精确的反向分化。什么结果是第一个PC(并且在生物学上是合理的)算法,它等同于BP在任何神经网络上更新参数,从而在神经科学和深度学习的构图研究之间提供了桥梁。此外,以上结果尤其是立即提供了BP的新型局部和平行实现。
寻找社交影响者是许多在线应用(从品牌营销到意见挖掘)的一项基本任务。现有方法严重依赖专家标签的可用性,而专家标签的收集通常是一个费力的过程,即使对于领域专家也是如此。使用开放式问题,众包提供了一种经济有效的方式,可以在短时间内找到大量社交影响者。然而,个体众包工作者只拥有碎片化的知识,而且这些知识通常质量较低。为了解决这些问题,我们提出了 OpenCrowd,这是一个统一的贝叶斯框架,它无缝地结合了机器学习和众包,可以有效地找到社交影响者。为了推断一组影响者,OpenCrowd 使用少量专家标签引导学习过程,然后联合学习基于特征的答案质量模型和工作者的可靠性。模型参数和工作者可靠性会迭代更新,从而使他们的学习过程相互受益,直到就答案的质量达成一致。我们基于变分推理推导出一种原则性优化算法,该算法具有用于学习 OpenCrowd 参数的有效更新规则。在不同领域寻找社交影响者的实验结果表明,我们的方法将 AUC 提高了 11.5%,比现有技术水平有了显著提高。此外,我们通过经验表明,我们的方法在寻找与较小受众直接互动的微影响者方面特别有用。
1分钟大概就在大脑皮层上。例如,有报道称,在将多种形式的信息整合到工作记忆中时,前额叶皮层会被激活[6]。我们认为大脑皮层是一种贝叶斯网络[7]。如果这是正确的,大脑皮层的工作记忆功能也应该利用贝叶斯网络来实现。在设计模型时,大脑中唯一物理存在的节点是那些代表当前时间 t 的信息的节点,并且每个节点只能引用时间 t-1 的信息。假设为了表示该模型,我们使用 BESOM [7],我们提出它是大脑皮层的计算模型。 BESOM 是一种贝叶斯网络,通过对条件概率表施加约束来限制参数数量的激增。 BESOM 的最新版本能够使用门来控制节点之间的连接[8][9][10]。我们之前展示了如何使用生成模型 [3] 来表示工作记忆,但在本节中我们将更详细地解释它。图2中,节点W表示工作记忆状态,S表示传感器输入,A表示强化学习机制选择的动作规则。 P 指定记忆状态的默认行为(保留或忘记值)。更新内存值时,A t +1 会抑制 P t +1 的影响。它由一个门(黑色圆圈)表示,控制从 A t +1 到 P t +1 和 W t +1 的转换。工作记忆的更新规则在这个模型上被表述为推理,但由于大脑在物理上不可能向后发送循环信念传播的信息,因此大脑必须做出某种近似的推理。 转到
Sorkin [107]和Borsten,Jubb和Kells [14]的论点确定,量子测量理论的自然范围是从非统一量子力学到相对论量子理论的自然范围,导致一个不可接受的后果,一个区域的预期值依赖于哪个单独的独立操作在Spacaceelike SpaceCelike型区域中执行。Sorkin [107]将这种情况标记为“不可能的测量”。我们将这些论点明确地呈现为不进行还原参数的逻辑形式,并研究了量子场理论(QFT)中测量的后果。sorkin型不可能的测量场景清楚地说明了一种道德,即在使用LUDERS规则的相对论量子理论中,微量子性本身不足以排除超级信号传导。我们回顾了三种不同的方法来制定QFT测量的说明,并分析其对“不可能测量”问题的反应。这两种方法是:基于Polo-G´omez,Garay和Mart´ın-Mart´ınez [93]中提出的检测模型的测量理论,以及针对几个QFT的测量框架提出的少数QFT和Verch [44]。QFT基础的特别兴趣是,它们具有共同的特征,这些特征可能具有有关如何代表QFT中测量的一般道德。这些道德是关于动态在消除“不可能测量”的作用,放弃了对本地代数A(O)的操作解释,代表了在区域O中进行的可能操作以及对国家更新规则的解释。最后,我们研究了基于历史的方法所采用的“不可能测量”问题的形式,并讨论了其余的挑战。
2005 年,红十字国际委员会 (ICRC) 出版了两卷本的习惯国际人道主义法 (IHL) 研究。1 第一卷包含 161 条简明规则的列表,每条规则后面都附有评论,其中包含大量对第二卷 (两部分) 中所含支持实践的交叉引用。该研究是红十字与红新月国际大会授权的近十年过程的成果,需要红十字国际委员会律师和外部专家付出大量工作。2 此后几年,该研究已迁移到网上,成为一个用户友好的数据库。3 此外,研究项目实际上并未结束,一支位于剑桥的律师团队不断更新该研究数据库的实践部分(但不更新规则)。虽然该研究一经发表便广受好评,但也招致批评(下文将对此进行进一步探讨),但如今它已成为实践者和学者的标准参考文献;事实上,就学术界而言,它可能是被引用次数最多的国际人道法研究著作。4 但该研究在实践中到底有多权威?我们希望在本文中回答这个问题。这个问题可以从许多不同的角度来构建和探讨。我们选择了一种实证方法,即收集和分析包含国家立场表达的文件、国际和国内法院和法庭的判决以及其他有影响力的行为者的成果中对该研究的引用。我们的分析表明,该研究越来越被视为一种高度权威的文书,因此,仅凭该研究的陈述,就会发现某一特定主张反映了习惯国际法。在没有任何一致反对的情况下,特别是各国的反对——今天似乎没有出现这种反对,即使最初情况并非如此,而且仍然存在一些不满——该研究的
量子力学 (2ECTS) Kris Van Houcke 1. 回顾量子力学的基础,量子力学的假设,薛定谔/海森堡/相互作用图像,两能级系统和布洛赫球 2. 量子力学与经典力学的关系,费曼路径积分表示 3. 多体系统,二次量化,多粒子系统的路径积分表示,量子蒙特卡罗和费米子符号问题 4. 弱相互作用玻色子的波格留波夫理论 5. 纯态与混合态,密度算子,约化密度算子,纠缠,(可能是:EPR悖论和贝尔定理) 6. 开放量子系统,算子和表示,量子测量,林德布拉德表示,波恩-马尔可夫主方程 量子信息论简介 (2ECTS) Alain Sarlette、Harold Ollivier 1. 状态:密度矩阵、内积、范数、保真度、 TVD、状态分解(Schmidt、Pauli)2. 算子(1):酉表示、CPTP 映射、其他表示(大酉/Kraus/Choi)3. 算子(2):Pauli 算子、作用于算子代数的通道、从交换关系中恢复子系统、Clifford 层次结构、受限操作类(LOCC、LO1WCC)4. 测量:射影测量、更新规则、POVM、非交换/联合可测性5. 纠缠:纠缠测量、纠缠单调、纠缠提炼、使用纠缠(隐形传态、交换、门隐形传态、与 Choi 的关系、超密集编码)6. 状态辨别:假设检验、熵、Holevo、条件熵/互信息/强子可加性、数据处理不等式、相对熵、平斯克