摘要目前德克萨斯州约有 60% 的家庭依靠电力进行空间供暖。随着脱碳努力的加大,非电气化家庭可能会采用电动热泵,从而显著增加冬季峰值(最高)电力需求。同时,预计人为气候变化将提高气温、夏季热浪的可能性以及相关的制冷电力需求。这些同时发生的变化的时间和幅度不确定,引发了人们对它们将如何共同影响峰值需求的季节性、固定容量需求和电网可靠性的问题。本研究使用气候变化预测、预测负荷模型和德克萨斯州电网的直流最优潮流 (DCOPF) 模型,调查了住宅空间供暖电气化和气候变化对长期需求模式和负荷削减潜力的净影响。结果表明,通过用更高效的热泵取代现有的化石燃料使用实现住宅空间供暖的全面电气化,可以显著提高未来更热天气下的可靠性。效率较低的热泵可能会导致更严重的冬季峰值事件和增加可靠性风险。随着供暖电气化程度的提高,系统规划人员需要平衡季节性峰值行为变化导致的资源充足性风险加大的可能性与带来的好处(提高效率和减少排放)。
如果将氢气用作燃烧燃料,扩大其作为零碳燃料的使用范围可能会对空气质量产生一些潜在影响。使用氢气为直接发电的燃料电池提供动力不会在使用点造成任何空气污染。当氢气在发动机、锅炉、炊具和熔炉中燃烧时,火焰的高温会分解空气中的氮气 (N 2 ),从而形成氮氧化物 (NO x ),这是一种重要的空气污染物。氢气燃烧的火焰比大多数化石燃料更热,并且每产生一个单位热量就有可能排放更多的 NO x 。另一方面,燃烧氢气而不是碳氢化合物燃料(例如汽油、柴油或乙醇等生物衍生燃料)可以改善空气质量,减少颗粒物排放并消除一氧化碳。在许多情况下,可以通过使用现有的废气后处理技术、降低氢气燃烧的温度和优化燃料与空气的比例来减少氢气燃烧产生的 NO x 排放。这有时会导致额外的成本和/或降低能源效率。目前市面上很少有专门设计用于燃烧氢气的发动机或锅炉,而且实际排放性能数据非常有限。为了确保氢气从空气质量角度发挥其作为更清洁燃料的潜力,需要实施有效的氮氧化物排放控制(技术和监管)。
单轴核心改进型涡轮发动机计划 (ITEP) 是美国陆军的一项计划,该计划要求业界生产一种新型涡轴发动机,该发动机将提供 50% 的功率、25% 的燃油消耗率,并降低生命周期成本。该计划旨在为黑鹰和阿帕奇直升机提供更多动力,随着机身增加新的装甲、弹药和航空电子设备,它们的重量不断增加。这种增长提高了直升机的生存能力和能力,但却以牺牲有效载荷和机动性为代价。此外,最近的冲突增加了对直升机在更热、更恶劣条件下性能改进的需求。ITEP 计划将通过为战士提供 3,000 SHP 级发动机来提供这种动力,该发动机运行效率更高、成本更低。为了响应这一号召,GE 航空开发了 T901-GE-900(以前称为 GE3000),作为美国陆军航空的下一代涡轴发动机解决方案。这项大胆计划的重点是提高功率、提高效率和降低成本,该计划将为未来的士兵配备我们国家最好的发动机。通过与黑鹰和阿帕奇战士建立值得信赖的合作伙伴关系,GE 创造了一款发动机,它能够提供战斗所需的性能,同时又不牺牲单轴核心设计的维护简便性。单轴核心架构一直是陆军航空兵的支柱,
广泛的文献记录了全球变暖对Aggregate生产率的负面影响,但我们对这种关系的微观起源一无所知。本文确定并量化了新通道(极端温度对资本不当分配的影响),这是总体气候损害的主要驱动力。使用来自32个国家 /地区的全球公司级微数据,我们提供了因果证据,表明每天的一天(> 30°C)将资本收入产品(MRPK)的边际收入产品(MRPK)的分散量增加了0.31日志点,暗示平均地区的平均地区年度TFP损失为0.11%。在更热,更经济发展的地区,这种效果更为明显。考虑到未来的适应和发展,我们的估计表明,到本世纪末,在SSP3-4.5方案下,全球范围的TFP损失为36.73%,相对于2019年。为解释机制,我们开发了一个公司动力学模型,其内部和跨公司内部和跨性别的温度敏感性。该模型预测,在极端气候中,温度不准确,生产率提高了,共同加剧了资本分配。我们在数据中找到了这些机制的有力证据。估计的模型表明,气候引起的失误每年占全球TFP的9%,占跨国生产率差异的9%,以及收入不平等的15%。这些发现强调了将公司级异质性纳入气候政策的重要性,并突出了改善中等范围的天气预测准确性作为一种具有成本效益的适应策略。
虽然小的海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,许多未知数仍然存在于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝结物种比不可接触的背景气体重。虽然已经预测,潮湿对流可能会在这些可凝结物种的某些阈值以上关闭,但该预测基于简单的线性分析,并依赖于对大气饱和度的一些强烈假设。为了调查这个问题,我们为具有大量浓缩物种的氢为主大气开发了一个3D云解析模型,并将该模型应用于原型温带海王星样星球 - K2-18 b。我们的模型证实了潮湿的对流的关闭,高于浓缩蒸气的临界丰度,并在此类行星的大气中稳定地分层层的发作,从而导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但现实的1D模型,该模型捕获了Neptune样气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用我们的模型研究了在K2-18 b上h 2主导的大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。
虽然小海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,关于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝度的物种比不可固定的背景气体重。虽然已经预测,潮湿对流可能会停止以上这些可凝结物种的阈值丰度,但该预测基于简单的线性分析,并依赖于关于大气饱和的一些有力的假设。为了调查这个问题,我们开发了一个3D云分辨模型,用于具有大量可冷凝物种的氢气大气,并将其应用于原型的温带Neptune样星球 - K2-18 b。我们的模型证实了在可凝结蒸气的临界丰度之上抑制湿对流的抑制作用,以及在此类行星大气中稳定分层层的发作,这导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但逼真的1D模型,该模型捕获了Neptune类气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用模型研究了K2-18 b上H 2域大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。
•天气归一流的能量。天气归一化的能源是您的建筑物在平均条件下使用的能量(也称为气候正常)。给定年份的天气可能比建筑物的正常气候更热或寒冷。天气归一化的能源造成了这种差异。请注意,调整仅适用于天气,但不适合气候。也就是说,该指标会随着时间的推移评估您的建筑物,但不能解释您的建筑物与其他具有不同平均气候(正常)气候的位置之间的差异。天气归一化的能源无法用于新的建筑设计项目,因为它们尚未经历不同的天气情况。•能量星分数。1-100 Energy Star得分是一个百分位排名,将您的建筑物与同行进行比较。能量之星分数既是气候和天气。为了提供分数,使用回归方程来预测您的建筑物的气候,天气和商业活动预计将使用的能量。使用能量少于此预测得分的建筑物反之亦然。用于您的预测的回归方程是基于国家分析,其中包括所有气候不同位置的建筑物。由于这种国家代表,因此在冷却度天(CDD)和加热度日(HDD)等术语上的回归系数包含了这些气候之间的差异。为了预测您在任何一年的建筑物的能源,我们将在当年合并您实际经验丰富的天气数据。例如,您的建筑物被预计在非常炎热的一年中会使用更多的能量。在新的建筑物设计的情况下,能量星评分将使用平均正常气候条件来计算能量预测,因为没有实际的天气。本文档说明了我们从何处获得天气和气候数据以及如何将其纳入指标:
几乎所有塑料均来自化石燃料(主要是石油和气体)制成的材料(例如乙烯和丙烯)。提取和运输这些燃料的过程,然后制造塑料会产生数十亿吨温室气体。倾倒在垃圾填埋场中的塑料可能需要数百年的时间才能使用称为光降解的过程分解。随着时间的流逝,塑料分解成甲烷和乙烯,这也导致气候变化,尽管缓慢。其他毒素也被释放到局部生态系统中,引起地面污染。塑料产品的废物管理长期以来一直是一个问题。燃烧塑料废物是对人类健康有害的空气污染来源,但也将毒素和二氧化碳释放到影响全球变暖的大气中。在我们的海洋中,塑料直接窒息并窒息了许多海洋动物和栖息地,可能需要数百年的时间才能分解。随着我们的气候变化,行星变得更热,塑料分解成更多的甲烷和乙烯,增加了气候变化速度,因此使周期永存。微小的动力室(微型塑料)在从大气和水中取出二氧化碳并将其隔离在深海水槽中。我们的研究表明,塑料会影响排水,河道和水库的水能能力。这导致邻近土地的洪水以及生物多样性和生计的丧失。要结合塑料污染,需要采取一些步骤,例如政府应该对购物者在购物中心和市场上获得的每个塑料袋征收高费用,因为它会阻止人们一次使用后丢弃他们;人们应接受三个RS的教育:减少,回收和再利用塑料材料;在环境中丢弃水夹和瓶子所施加的危险。应鼓励纸袋;政府应发起一项运动,以打击该国的塑料袋和瓶子;政府应将“塑料污染法案”通过法律,以作为公民的指南。
停止三十个未来的土地使用和运输计划修正案的历史,并经常提出问题,停止三十条道路是亨德森维尔的最后一个未开发的走廊之一,其中有几条大面积大部分位于其南部边界。亨德森维尔市约有15%至20%的未开发土地,而停靠的三十个走廊则代表了其中的很大一部分。大面积,可开发区的可用性降低导致已经加热的房地产市场变得更热,并且对这一走廊的发展压力加剧了。2009年土地使用与运输计划亨德森维尔市于2009年与全市范围的土地使用与运输计划一起研究了该地区。 LUTP将大部分停止区域分为“郊区生活”,其主要土地用途,例如单户独立,别墅,别墅,联排别墅和高级生活。 次要用途是多户,公民,机构和公园,步道和开放空间。 停止三十条道路的西端(位于新schackle岛路)和德雷克斯溪路(Drakes Creek Road)以东的物业显示为“区域活动中心”,其中主要用途是办公室。 次要用途是公民,机构,公园,小径和开放空间。2009年土地使用与运输计划亨德森维尔市于2009年与全市范围的土地使用与运输计划一起研究了该地区。LUTP将大部分停止区域分为“郊区生活”,其主要土地用途,例如单户独立,别墅,别墅,联排别墅和高级生活。次要用途是多户,公民,机构和公园,步道和开放空间。停止三十条道路的西端(位于新schackle岛路)和德雷克斯溪路(Drakes Creek Road)以东的物业显示为“区域活动中心”,其中主要用途是办公室。次要用途是公民,机构,公园,小径和开放空间。
本文概述了传统的地热系统和非传统地热发展,作为能源专业人员之间的讨论所需的共同参考。常规的地热系统具有热量,渗透性和流体,仅需钻至<3.5 km。低温(LT)系统无处不在,具有<100°C,正常的热流或放射性花岗岩作为热源,并用于区域加热。中温度(MT)100˚C -190˚C和高温(HT)190˚C -374˚C资源主要在板界处,带有火山侵入性热源,主要用于发电。单井容量<2 MWE和<5 mW(LT),<7 MWE和<15 MW(MT),<25 MWE和<125 MW(HT)。非常规地热替代品具有热量(8˚C -500˚C)和一系列深度(1 m至20 km),但缺乏渗透性或液体,因此可以通过传导来刺激刺激。HVAC在井中的深度为1-2 m且浅地热降至500 m,均捕获<25°C,<10 kW且<5 mW且<5 mW的单位容量。Technologies targeting ≤ 500˚C are ei- ther advanced by geothermal developers at <7 Km depth (Enhanced Geo- thermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geother- mal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling降至20公里)。他们的primary目的是发电,依靠闭环,但是EGS在压裂过程中使用断裂与地震风险进行热交换。无与伦比的方法可能无处不在,浅地热已经起作用。更深,更热的非常规的替代方案仍然是经验丰富的,克服的成本和技术挑战,使其变得完全商业化。同时,传统的地热资源仍然是