唯一不同的是,大多数已知的可开采锂矿仅分布在少数几个国家。尽管澳大利亚目前是世界上最大的锂生产国,但全球已知储量的一半左右都蕴藏在智利、玻利维亚和阿根廷边境“锂三角”的盐滩中。中国也有相当可观的储量。从这些来源提取锂是一个能源密集型的过程。需要大量的水将水从源头泵入巨大的池塘,水在那里蒸发,剩下盐。这些盐经过进一步加工和分离,可获得富含锂的矿物。该过程的所有阶段都需要使用大量的淡水,通常是在这种资源稀缺的干旱地区。据估计,提取一吨锂需要多达 200 万升的水。一个显而易见的替代方法是从盐水(比如海水)中获取锂;这种元素在世界海洋中储量丰富。但是,由于锂的含量为百万分之0.1-0.2,从这些来源提取金属在技术上具有挑战性,而且和锂矿开采一样,它也会产生相当大的环境影响。出于这些原因,盐水不被认为是一种可靠的来源。但是,正如中国南京大学材料科学家何平、周浩生和他们的同事在《自然》杂志的一篇评论文章中所解释的那样,有办法改进现有的从低质量来源中分离锂的方法,比如开发更有效地捕获锂的化学品,或使用特殊的过滤器和电力将其分离出来(S. Yang 等人,《自然》杂志 636 期,309-321 页;2024 年)。好消息是,从改进的过滤器到更好的沉淀方法,几种技术正在被开发来实现这一点。然而,作者表示,要充分利用低质量的锂源,研究需要回到基础,了解如何分离低浓度的微小离子,然后重新开始改进目前正在开发的技术。研究人员还在研究锂的替代品,包括钠。钠元素在元素周期表中位于锂的正下方,具有相似的化学性质,更容易获取,但其原子更重。
Rick Larsen排名会成员大厦交通与基础设施的成员委员会2163 Rayburn House办公室大楼华盛顿特区20515亲爱的董事长Graves和排名成员Larsen:作为交通与基础设施委员会为他们的即将到来的Markup做准备,我们敦促您反对您的任何立法,以增加最大的卡车权重或最大额度上的feling fording inforder nefforn forder nefford of Flitheraine高处。我们的反对派延伸到将作为“试点计划”的一部分提高卡车重量限制的任何立法,包括最初在H.R.471,《船IT法案》以及任何州或商品的豁免或当前联邦限制的豁免,可以作为Markup的独立规定提供。无论如何,我们的道路和桥梁需要继续维修,重建和投资。美国土木工程师学会(ASCE)在其2021年基础设施报告卡中,使该国的道路成绩为“ D”。以“ C”等级,该国的桥梁的表现并不高。报告说,该国42%的桥梁至少50岁,而7.5%的桥梁在结构上不足。根据ASCE的说法,该国桥梁维修需求的估计值为1,250亿美元。当我们希望重建道路和桥梁时,允许更重,更长的卡车只会使事情变得更糟。美国运输部研究了各种更长,更重的卡车配置对州际和美国公路的影响,发现道路和桥梁的额外损失成本将需要数十亿美元的新联邦支出,这增加了我们的预算赤字。卡车长度和体重的增加将对当地基础设施,尤其是桥梁产生尤其严重的后果。最近对超过47万本地桥梁(较重的卡车对当地桥梁的影响,2023年3月)的分析无法安全容纳91,000磅的卡车。这些当地桥梁将需要张贴并最终更换,耗资超过6008亿美元。这只会增加州,县和地方政府的压力,以寻找资金来修复这些桥梁,同时今天没有足够的收入来支付基础设施维护成本。由于上述原因,我们要求您拒绝任何会增加当前卡车重量或长度限制的立法语言,包括以试点计划,州或商品豁免形式的提案,或者因当前联邦限制而获得的其他豁免。真诚的,美国公共工程协会全国县协会
Scientific Atlanta Technical Assistant, Satellite Communications 6/81 - 9/81 Hewlett Packard Sales Assistant, Technical Computers 6/82 - 9/82 IBM Junior Design Engineer 6/83 - 9/83 Georgia Institute of Technology Calculus Teaching Assistant 9/83 - 12/83 AT&T Bell labs Member of the Technical Staff 6/84 - 3/87 Boston College Visiting Scholar, Department of Psychology 7/05-6/06 Affeactiva联合Founder,1/10-12/12 Affeactiva联合法人,首席科学家1/10-4/13 Physiio International,Inc创始人,董事长兼首席科学家4/13-4/14 Empatica,Empatica,Inc(在合并后更重命名)联合科学家,首席科学家和首席科学家4/14/22 EM -8/22 EM -8/22, 8/22-现在9。MIT任命的历史:EECS 2/87-5/87电子学研究助理,电子设备研究实验室5/87-87-87 8/87-87-12/87 EECS 1/88-5/88 EECS教学助理,EECS 8/88-88-12/88 EECS 8/88研究助理,电子研究助理,电子学研究助理,电子学1/89 5/8 7/8/8/8 7/8/8/8/8/8 7/8/8/8 7/8/8/8/8/8 7/8/8/8 7/8/8/8/8/8/8/8/8/8 7/8/8/8/8/8/8/8 7/8/媒体实验室研究助理1/90-5/90 5/90- 8/90 8/90-12/90 1/91-5/91媒体技术助理教授7/91-7/92 NEC计算机和通信教授7/92-7/92-7/98媒体技术副教授(SANS TENURE)(SANS TENURE)7/95 -7/95 -7/95-95-95 -95- 7/98 - 7/98 - 7/98 -98 -98 ASCIERS of SCIE(SANS)(7/98 -98 -98 -98 -98/98)(SANS TENERS of SACI)(7/98 -98 -98/98 - 98 - 7/98 -98/98/98 ASC) 7/98-7/05媒体艺术与科学教授7/05 - 6/24 Grover M. Hermann健康科学技术教授7/24-现在10。Consulting Record: AT&T Bell Labs 3/87 - 6/89 CSIRO 3/29/93 - 4/5/93 Hewlett Packard Labs 2/4, 8 - 11/94 NEC/NICCO 2/16/94 Interval Research 7/13/95 Expert Witness, Tillinghast Collins & Graham 8/95 - 11/95 Hewlett Packard Labs 6/14/96苹果,高级技术集团6/19/96 Proctor&Gamble 3/14/97 BT,PLC 5/23/97 BT,PLC 6/17-19,23,27/97 Cesdis科学委员会1/98-198-12/00 SBIR/HUDLICKA CONTEM
外星人不知道的是人类读书。外星人现在观察到整齐的网格形扫描路径,并具有许多相当始终如一的定时固定,并由萨卡德斯(Sac-Cades)插入,其短幅度相当一致。外星人在逻辑上会感到困惑:与以前的数据相比,似乎反映了天然的眼动行为,新数据似乎非常人工,也许必须完全源于其他物种。但是,现代人类如此依赖的正是这种人工行为。有关阅读过程的知识不仅重要,而且从根本上很有趣:由于系统性,对各种认知成分的负担(视觉感知,注意力选择,成员,眼球运动计划)的负担可能比任何这些成分都更重。在视觉和注意力方面,我们可能会注意到,与自然场景相比,文本提供的视觉效果要多得多。在亮度,颜色或对比度方面,没有比周围环境更重要的位置。此外,信息在整个视觉范围内非常密集且均匀分布,这意味着视觉范围的每一点都必须进行主动处理,并且必须以特定的,常规的方式进行(例如,左右 - 右 - 右上和自上而下)。最后,所有这些位d,所有单词d都必须作为单独解释的单元接近。自然的场景观看类似于阅读,然后认识到一棵树将涉及计算其树枝和树叶。大脑每天如何应对这些极端条件?没有视觉任务需要像阅读行为这样的系统性;并且没有任何认知成分对于将系统性作为注意选择而重要。在本文中,我们继续进行了关于阅读潜在关注的潜在限制的突出且尚未解决的辩论。显然存在注意力选择;但是,这种情况是如此细化,以至于系统可以离散地插入单词时,而我们的眼睛在尖顶线的海洋上飞来飞去?,如果注意力选择不是那么刻薄,并且大脑确实不断地忙于一个以上的词,那么它如何成功?阅读过程的这一特定方面是在理论之间的裁决中发挥关键作用,在这里我们旨在为其理解做出贡献。We do so by focusing on syntactic pro- cessing, which is assumed, in recent and ongoing modeling work ( Meeter, Marzouki, Avramiea, Snell, & Grainger, 2020 ; Snell & Grainger, 2019a , 2019b ; Snell, van Leipsig, Grainger, & Meeter, 2018a ), to play a key role in the brain ' s ability to deal with multiple words simultaneously.在适当的时候将看到,我们将在句子阅读过程中探测平行的句法处理,并结合眼睛跟踪和电刻画(EEG)。
在许多研究中开发了,但是这些候选人都没有被批准为结核病计划。目前,重组分枝杆菌结核(MTB)融合蛋白纳米粒子的疫苗正在开发为新的TB疫苗原型。在这种新疫苗中使用了源自结核分枝杆菌细菌的早期分泌抗原靶靶6-kDa(ESAT-6)和抗原85C(AG85C)的两种免疫主导蛋白。将ESAT-6作为抗原的选择是因为该免疫主导抗原是在牛肉分枝杆菌BCG中删除的差异1(RD1)区域的一部分,并且已在疫苗中广泛探索。(4)尽管ESAT-6具有良好的抗原性,但ESAT-6免疫未能引起小鼠的足够T细胞反应。为提高免疫原性,它可以作为融合分子构造,其中大型免疫原子可以充当载体,如在ESAT-6和AG85B融合分子,TB10.4和AG85B融合蛋白以及TB10.4-AG85B-AG85B-AG855A多蛋白质中所证明的那样。(5,6)AG85C是一种免疫主导抗原,属于AG85复合物(AG85A,AG85B和AG85C)。ag85c对这种病原体的近40%的甲酸含量造成了奇异的责任,并导致其毒力。在儿童中,对AG85C的抗体反应比对AG85A和AG85B的抗体反应更好。(7)ESAT-6和AG85C抗原将作为由DNA Taging(C蛋白末端中的一系列氨基酸组氨酸)产生的融合蛋白产生。ESAT-6-AG85C-PolyHis TAG(EAH)抗原与脂质体辅助剂的融合预计将是结核病的潜在疫苗。该疫苗候选中的脂质体佐剂是可以诱导免疫反应的疫苗输送系统。脂质体具有库量效应,可促进疫苗的稳定性,完整性和逐渐释放。脂质体颗粒物也很容易通过抗原呈现细胞并激活免疫反应。(8)需要免疫原性测试来评估候选结核病疫苗的免疫反应。在疫苗发育的临床前阶段,免疫原性测定疫苗是在外周血单核细胞(PBMC)上离体进行的。在MTB感染中是一种细胞内细菌,具有更重要作用的免疫反应是细胞免疫反应。用于评估细胞免疫反应的免疫学参数是评估T细胞产生的细胞因子反应。T细胞产生的主要细胞因子之一是干扰素 - γ(IFN-γ),作为消除MTB的防御机制。(9,10)T细胞形式的细胞免疫反应在被MTB感染后1周内增加,如果通过密集(9,10)T细胞形式的细胞免疫反应在被MTB感染后1周内增加,如果通过密集
aloha,塔纳斯(Tarnas)主席和众议院司法与夏威夷事务委员会成员。我是夏威夷零售商人的总裁蒂娜·雅马基(Tina Yamaki),我感谢这个机会作证。夏威夷的零售商人成立于1901年,是全州范围内的,不是为了支持夏威夷零售业的增长和发展的利润贸易组织。我们的会员资格包括小妈妈和流行商店,大型商店,经销商,豪华零售,百货商店,购物中心,在线卖家,当地,国家和国际零售商,连锁店以及介于两者之间的所有人。我们谨反对HB 470 HD2。此措施从7/1/2028开始,禁止销售不符合ANSI B-175.2 1类评级的任何叶吹制,绳子修剪器或杂草鞭子;增加了违反叶子鼓风机,绳子修剪器和杂草鞭子限制的罚款;从2028年7月1日开始,禁止政府实体购买不符合ANSI B-175.2 1级评级的吹叶机,弦绳或除草剂;并有效7/1/3000。这项措施导致禁止非电动吹动叶子,绳子修剪器和杂草鞭子。这项措施意味着在2028年7月1日或之前,零售商无法再出售它们。这样的措施将对我们当地的小型企业施加特别困难,尤其是如果他们无法满足截止日期以清算其库存。并非所有商店都能够将其非电动吹叶机,绳子修剪器和夏威夷外的杂草送往姊妹商店。他们负担不起另一个意外的增加费用或损失。这意味着他们所有的汽油库存都必须以折扣价出售,要么亏损或被丢弃。这项措施有可能杀死许多本地企业,他们已经在努力保持货物成本,运输,最低工资,健康保险和其他运营成本的上涨而努力保持开放状态。零售商聆听客户的需求。仍然需要使用技术。夏威夷没有像大陆上那样的典型变化季节,我们必须考虑到这一点。我们生活在一个全年都有郁郁葱葱的州。因此,我们看到许多居民和企业在居民区雇用小型当地园林绿化企业以确保其财产维护。虽然市场上有电动叶子,绳子修剪器和杂草鞭子的选择,但在市场上,重型商业设备的选择有限。这些物品的价格极为昂贵,几乎是汽油动力的叶子,绳子夹板和杂草鞭子的价格的两倍。此外,电池需要持续的充电,一些吹叶机,杂草鞭子和绳子修剪器并不那么强大,无法真正有用。大多数无绳电动或电池供电的叶轮的运行时间约为20–45分钟,而杂草鞭子和绳子饰物每充电的运行时间为35分钟。升级到更大的电池将使设备更重。有线电动设备只能达到其电源线的长度,从而限制了运动的范围,并有可能阻碍进入物业的某些区域。这可能导致完成任务的效率降低,并增加了完成任务所需的时间,尤其是对于更大的特性或重型清洁工作。
Singapore, 20 October 2020 NTU spin-off Zero Error Systems launches new radiation-protection chips for satellites and autonomous vehicles The Singapore tech firm also raised S$2.5 million seed funding A “smart chip” capable of protecting satellites from radiation damage could enable fut ure satellites to carry more sophisticated equipment and yet be less costly to build, th anks to an innovation developed by Nanyang Technological University,新加坡(NTU新加坡)研究人员。NTU开发的智能芯片由由电气和电子工程学院的Joseph Chang教授领导的团队可以检测到传入的重型辐射,并有可能对电子产品造成严重损害。 当检测到辐射的效果(称为单个事件闩锁)时,智能芯片会安全地关闭卫星中的其他电子设备,并在危险通过后将其拒之门外。 芯片本身得到了硬化和保护,以防止重型离子辐射,并可以在整个活动期间保持“清醒”。 被称为闩锁检测和保护(LDAP)芯片,现在由NTU的创新和企业公司Ntuivitive孵育的零越系统(ZES)商业化。 LDAP的技术最近获得了两项专利,并已在一个回旋子(一种产生辐射颗粒的粒子加速器)的重离子测试中进行了验证。 该芯片已在日本京胡岛理工学院,日本,巴拉圭和菲律宾建造的三个Pico-satellites中安装,作为辐射保护电路的一部分,预计将于2021年首次推出太空。可以检测到传入的重型辐射,并有可能对电子产品造成严重损害。当检测到辐射的效果(称为单个事件闩锁)时,智能芯片会安全地关闭卫星中的其他电子设备,并在危险通过后将其拒之门外。芯片本身得到了硬化和保护,以防止重型离子辐射,并可以在整个活动期间保持“清醒”。被称为闩锁检测和保护(LDAP)芯片,现在由NTU的创新和企业公司Ntuivitive孵育的零越系统(ZES)商业化。LDAP的技术最近获得了两项专利,并已在一个回旋子(一种产生辐射颗粒的粒子加速器)的重离子测试中进行了验证。该芯片已在日本京胡岛理工学院,日本,巴拉圭和菲律宾建造的三个Pico-satellites中安装,作为辐射保护电路的一部分,预计将于2021年首次推出太空。教授Chang解释说,他们保护卫星免受辐射损伤的新方法与常规方法不同,这种方法使用卫星的每个组件使用辐射硬化的空间级电子设备。这是昂贵的,使卫星更重,并将选择降低到老年一代的“尝试和测试”组件。“通过使用我们的LDAP芯片,卫星制造商现在可以使用最新的
技能和想象力随着东印度公司的惩罚性出口政策和不受限制的机器制造商品进口而下降,以至于在上个世纪末,集市和节日沦为仅由公共卫生部门关注的问题。它们不再被视为重要的贸易和商业中心,而从政府的角度来看,它们现在只是一群人的集合,需要防止流行病在他们中间爆发。集市和节日仍然是法律和秩序的问题,警察局和地区委员会继续在当地办事处保留它们的完整名单,这一来源至今仍未得到挖掘。在 1951 年西孟加拉邦人口普查工作之后,作为西孟加拉邦人口普查出版物计划的一部分,出版了一本薄薄的书,其中包含按地区及其警察局排列的集市和节日清单。该名单主要由地区委员会和地区警察局长提供的信息组成。这两个名单被整理成一个包含几栏的综合名单:其辖区和警察局下属村庄的名称及其管辖名单编号、当地通常称为节日或集市的名称、举办节日或集市的英语月份、节日或集市的持续时间,最后是参加人数。虽然只是一份名单,而且并不完整,但这本书引起了学者和公众的关注和赞赏。它的普遍价值在于它是一本概要,其特殊价值在于介绍全国各地特定节日的分布情况。西孟加拉邦人口普查业务主管继续担任荣誉职务。不时地提出要求对这个问题进行广泛的调查,这似乎很符合主管的个人愿望。首先,西孟加拉邦的许多古老而传统的集市和节日正在走向消亡,因为各种力量在反对它们,而且这些集市正在迅速消失。和节日现在只能举行,将来再也不会举行了。其次,人口普查办公室认为其职责是通过更深入的调查来维持该出版物所引起的兴趣。其次,一份令人满意的问卷被认为是最重要的。经济回归。当新任务被视为收集关于每个博览会和节日的大量第一手资料时,一种不同的方法就出现了。因此,首先有必要接触每个地区尽可能多的个人,而不要将调查仅限于政府或半政府来源、部门或组织。在设计问卷时,我们考虑了许多目标。这些是:(a)问卷的语言应该非常简单和准确,主要设计用于具有小学教育水平的人的理解。同时,问题应该具有足够的启发性以吸引辅助信息。如果实现了这个目标,就应该能够获得详尽的信息而不需要无关的细节。(b) 它应该成功获得明确的环境、社会和环境信息。村庄或举行特定集市或庆祝节日的地方的场地。(c) 应强调节日或礼拜的那些方面,这些方面将带来当地特有的仪式和宗教习俗的细节。(d) 不仅应获取有关更重要和更知名的节日或集市的信息,还应获取有关鲜为人知但意义重大的集市和节日的信息。建议将调查范围扩大到地区当局批准和许可的集市和节日之外,因为后者的数量很少。总数。(e) 应尝试获取有关经济活动和模式的充分信息。
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而得到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍而重量仅为传统钛风扇叶片的三分之一 – 现已成为 GE 宽体发动机的标志 世界推力纪录发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材部件 发动机获得 FAA 批准可使用增材制造压缩机传感器 GE 一直在投资和改进发动机。GE 工程师已经增强了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发布规格相比,燃油消耗降低了 3.6% 在翼时间提高了 60% 达到世界一流水平 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其及其全球维护、维修和大修 (MRO) 提供商网络可以随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机,通过有针对性的工作范围满足所需的生命周期,优化硬件利用率并最大限度地降低拥有成本。GE90-94B 发动机的额定推力为 94,000 磅,建立在早期 GE90 发动机型号的成功经验之上,用于为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后推力,GE 交付了 GE90-115B 发动机,现在为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证的起飞推力为 380 kN(85,000 磅),仅需两台发动机便足以满足 777 等大型飞机的需要,该飞机可搭载 375 名乘客(重量约为 230 吨)。它是 GE/NASA 节能发动机 (E3) 项目的衍生产品,也是燃油效率最高的发动机,当今最安静、最环保的发动机。除了提供最高推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率提升、更低的噪音污染和 33% 的 NOX 排放量,比当今的高涵道比发动机低。本次研讨会试图通过简要介绍发动机的特点来突出发动机的各个方面。 2 比较高推力级涡扇发动机 (> 200 kN) (根据 [2] 修改) GE-90 CF6-50C2 CF6-80C2 公司通用电气 (美国) 通用电气 (美国) 通用电气 (美国) 自 1995 年 9 月 1978 年 10 月开始使用 1985 年 10 月首次在空客 A-340 和 B-777 上飞行 KC-10 (军用) A-300/310, 747/767 描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 毫米 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO推力 388.8 kN 233.5 kN 276 kN巡航推力 70 kN 50.3 kN 50.4 kNS。燃油消耗(SLS) 8.30 mg/Ns 10.51 mg/Ns 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/s是否存在FADEC* 是 否 是其他信息 NOx排放量降低33%。噪音比同级别的其他TF发动机低(由于风扇尖端速度低)。LPT的TET为1144 K。燃油消耗(sfc)比其他发动机低,寿命长,可靠性高。 RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310 描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5TO 时推力 269.4 kN 366.1 kN 202.3 kN巡航时推力 52.1 kN 72.2 kN 176.3 kNS.FC 15.95 mg/Ns(巡航)15.66 mg/Ns(巡航)10.06 mg/N-s空气质量流量 728 kg/s 728+ kg/s 687 kg/sFADEC(Y/N)否是否其他信息合同中(截至 95 年 9 月)世界上功率最强大的常规空调发动机(Trent 772)*FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作负担。• 降低飞机运营成本。低推力级涡扇发动机 (< 200 kN) ([2] 之后改进) 3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底开始使用 1970 年 2 月 1988 年 7 月 首次在空客 A-340 波音 727/737 和 DC-9 空客 A-320 上飞行 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约) 1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米 压力比 37.4 17.3 29.4 涵道比 6.6 1.00 5.42 TO 时推力 138.8 kN 72.9千牛 111.25 kN巡航推力30.78 kN18.9 kN21.6 kN SFC16.06 mg/Ns23.37 mg/Ns16.29 mg/N-s空气质量流量466 kg/s148 kg/s355 kg/sFADEC(Y/N)是否是其他信息4 GE-90涡扇发动机循环分析以下是借助计算机程序进行的简单大涵道比涡扇发动机循环分析的结果。分析理论可参见[3]。更广泛和准确的分析可参见[4]。GE90发动机的可用数据仅限于其起飞推力、涵道比(BPR)和总压比(OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(例如 CF6-80C2 和 CFM56)并考虑了适当的改进而得出的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(公里)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300mf(千克/秒)1.079 2.968SFC(毫克/纳秒)15.600 7.910Sp。推力(Ns/kg) 120.100 278.100 计算出的巡航推力值与装有两台 GE90 发动机的波音 777 飞机所需的推力(每台发动机约 65-70 kN)非常接近。 93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 推力SFC 推力 & SFC vs TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 FAA 对 GE90 的认证,GE 航空发动机公司完成了有史以来最广泛的地面和飞行测试项目之一,这是发动机制造商开展过的项目之一。GE 于 1990 年 1 月宣布开发 GE90。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台全尺寸发动机投入使用。unisolve_pharmacy_software_manual.pdf 自那时起,GE 及其收益共享参与者共运行了 13 台开发发动机,验证了发动机固有的设计优势。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上飞行的 228 小时。GE90 耐力发动机完成了超过 14,000 个循环,并展示了出色的分段耐久性。七台发动机的推力超过 100,000 磅(444.5 千牛),其中一台创下了 110,000 磅(489 千牛)的推力纪录。事实上,GE90 开发发动机的推力水平已超过 100,000 磅(444.5 千牛),持续超过 65 小时。作为必需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅(1.13 千克和 3.63 千克)的复合叶片鸟吞测试。1994 年 10 月,在炎热天气下,四台 2.5 磅的鸟被吞噬,发动机以产生 85,000 磅(377.8 千牛)推力所需的速度运转。没有推力损失,发动机在吸入后所需的 20 分钟运行时间内响应所有油门指令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运转。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片引爆测试。释放叶片以 2,485 rpm 的风扇速度引爆,比目标速度高出 10rpm,发动机产生超过 105,000 磅(466.8kN)的海平面静态(SLS)校正推力。发动机支架系统按设计运行,测试证明了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在第一阶段的测试中,该发动机在 45 次飞行中累计飞行了近 228 小时。发动机表现异常出色,其性能水平超出规格,并在整个飞行包线内为飞行员提供了不受限制的油门运动。34042629589.pdf 为什么要使用全新发动机?市场要求从历史上看,飞机的重量和推力要求不断增加。lowrider 汽车展评判评分表今天,市场青睐重量更重、航程更远、内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于使用 GE90 驱动的大型宽体飞机。为航空公司的未来做好准备 • 为整个新型大型飞机系列提供通用发动机。• 新型宽体飞机需要比现在的发动机高 20-30% 的推力。• 历史上飞机需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内在的总体性能优势• 比今天的发动机高 10% 的 SFC。• 高推力增长与通用性。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计GE90 设计用于:• 推力增长。• 与 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9• 低排放。• 低噪音。• 降低运营成本。选择可显著节省燃油的循环。总计其余乘以三级• 涵道比优化。• 总压比优化。• 设计用于最低 SFC 和燃油消耗。 10. 总结 pdf 选择的设计可使航空公司获得最大利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商制定的维护程序。• 低噪音、低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证推力为 84,700 磅(376.5 kN)- 1995 年 2 月• 首次增长认证推力为 92,000 磅(408.9 kN)- 1996 年 5 月。• 可能增长到 120,000 磅(533.4 kN)。高推力和测试经验总结• > 422.3 kN 下超过 145 小时• > 435.6 kN 下超过 95 小时• > 440.0 kN 下超过 75 小时• > 444.5 kN 下超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时注:海平面静态(SLS)校正推力水平八台 GE90 发动机已在 445 kN 的 SLS 推力下或以上运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证(490.3 kN)。• 三重红线段测试“彩排”。• 1.13 公斤鸟牌认证/叶片伸出认证。 10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1. 复合风扇2. 低压压缩机 (LPC)/增压器3. 高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5. 高压涡轮 (HPT)6. 低压涡轮 (LPT) 11 复合风扇 GE90 风扇设计 风扇图 • 22 个复合宽弦叶片和平台。• 大风扇直径可实现更高的空气质量流量。• 风扇齿轮传动 - 降低风扇尖端速度,从而产生更少的噪音。• 低尖端速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查并减轻重量。• 混合(圆锥形/椭圆形)旋转器,减少核心碎片摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。 GE90 风扇叶片 风扇叶片 • 宽弦复合风扇 – 性能高、重量轻。• 耐环境性 – GE90 风扇材料系统表现出与当前飞机复合材料相同的耐环境性。12 • GE90 风扇复合材料系统与目前服役的风扇复合材料系统类似。 • 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。 • 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。 复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。 los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的扩大规模在测试单元和飞行测试中都展示了性能和可操作性。 燃烧室 •来自成功的先进军事计划的双圆顶环形燃烧室。 • 降低 NOX 排放水平(低至 10 ppm)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 针对功率设置进行调节的圆顶气动热调节。• 高度重新点火能力 30,000 英尺(9.144 公里),留有余地。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为 1 级和 2 级。 • 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 类似于 CFM56 的刚性、简单支撑转子系统,可实现动态稳定性。• 仿照成功的 CF6-80 设计设计的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统特点。• 带有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 带有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。 15 其他特点 ([2]) GE90 和环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体上降低任务总燃料消耗 = 降低任务总污染物。• 提高推力与核心流量比。 GE90 燃烧室在降低排放水平的同时提高了可操作性 • 双环形燃烧室。• 优化了飞行员圆顶以提高可操作性 - 优化了主圆顶以提高功率。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发经验。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 验证了排放水平。 可运输性• 针对标准发动机运输方法设计。GE90推进器• 比今天的高涵道比涡扇发动机更小 GE90模块化设计• 只允许更换推进器• 推进器/喷嘴与风扇定子模块分离• 风扇定子模块留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。 • 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。 • 422.3 - 435.6 kN 风扇改进的涡轮机械。 • 466.8 kN 风扇带有降级核心的更高 P/P 风扇。 • 511.2 + kN TF带有降级核心的更高速度和 P/P 风扇。 17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。 85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然缺乏有关该发动机的确切技术信息(例如其重量、压力比、TIT、巡航推力、sfc 等),导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,它在推力和燃油效率方面是独一无二的。18 参考文献 1.
GE 的客户门户允许您通过单击浏览发动机车间手册、图解零件目录、服务公告等。如需更多信息,请联系您的 GE 代表或我们的航空运营中心 (AOC),电话:1-877-432-3272(美国)或 +1-513-552-3272(国际)。 GE90 发动机为双引擎波音 777 飞机提供动力,它将创纪录的推力和高可靠性与更低的噪音、排放和燃料消耗相结合,成为一款因其尺寸和创新而受到全世界认可的标志性喷气发动机。复合材料风扇叶片 商用发动机采用复合材料风扇叶片,强度提高一倍,重量仅为传统钛风扇叶片的三分之一 - 现已成为 GE 宽体发动机的标志 世界纪录推力发动机达到 127,900 磅推力,创下世界纪录(此后在认证测试中被 GE9X 发动机以 134,300 磅的推力打破) 无 FOD 核心发动机采用内开式可变排气阀门,实现无 FOD(异物碎片)核心 增材制造部件 发动机获得 FAA 批准,可使用增材制造压缩机传感器 GE 继续投资和改进发动机。GE 工程师改进了 GE90-115B 发动机的压缩机、燃烧室以及高低压涡轮部件,以减轻重量、提高燃油效率和增强耐用性。与初始发射规格相比,燃油消耗减少了 3.6% 在翼时间缩短了 60% 世界一流的 99.98% 的可靠率 GE 已向世界各地交付了 2,800 多台 GE90 发动机,其全球维护、维修和大修 (MRO) 提供商网络可随时随地为客户提供支持。通过 GE 的 TrueChoice 发动机服务套件,GE90 运营商可以使用 MRO 选项,这些选项可以优化发动机以满足具有目标工作范围的预期生命周期,从而优化硬件利用率并最大限度地降低拥有成本。额定推力为 94,000 磅GE90-94B 发动机以早期 GE90 发动机型号的成功经验为基础,为波音 777-200 和 777-300 飞机提供动力。在被波音公司选中开发推力为 110,000 至 115,000 磅的发动机后。GE 交付了 GE90-115B 发动机,该发动机目前为远程波音 777-200LR、777-300ER 和 777 货机提供动力。低压涡轮/高压涡轮最大直径(英寸)最大功率时的总压力比 1 GE90 - 简介 GE-90 涡扇发动机(剖面图)由通用电气与法国 SNECMA、日本 IHI 和意大利 FiatAvio 联合制造,并于最近(1995 年 9 月)首次由英国航空公司为其新波音 777 机队委托,它是当今最强大的商用飞机发动机。经认证,起飞推力为 380 kN(85,000 磅)。,对于像 777 这样可搭载 375 名乘客(重量约 230 吨)的大型飞机,仅需两台发动机即可。作为 GE/NASA 节能发动机 (E3) 计划的衍生产品,它也是当今最省油、最安静、最环保的发动机。除了提供最大的推力外,GE90 预计还能为航空公司带来 5-6% 的燃油效率改进、更低的噪音污染和比当今高涵道比发动机低 33% 的氮氧化物排放量。本次研讨会试图通过简要介绍发动机的功能来突出介绍发动机的各个方面。2 对比高推力级涡扇发动机 (> 200 kN) (修改自 [2]) GE-90 CF6-50C2 CF6-80C2公司通用电气 (美国)通用电气 (美国)通用电气 (美国)自 1995 年 9 月 1978 年 10 月 1985 年 10 月开始使用在空客 A-340 和 B-777 KC-10 (军用) A-300/310, 747/767 上首次飞行描述高涵道比 TF 双轴高 BPR TF 双轴高 BPR TF 重量 (干重) --- 3960 千克 4144 千克总长度 4775 毫米 4394 毫米 4087 毫米进气口/风扇直径 3124 毫米 2195 mm 2362 mm压力比 39.3 29.13 30.4涵道比 8.4 5.7 5.05TO时推力 388.8 kN 233.5 kN 276 kN巡航时推力 70 kN 50.3 kN 50.4 kNS.F.C.(SLS) 8.30 mg/N-s 10.51 mg/N-s 9.32 mg/N-s空气质量流量 1350 kg/s 591 kg/s 802 kg/sFADEC的存在* 是 否 是其他信息 NOx排放量降低33%。噪音低于同级其他 TF(由于风扇叶尖速度低)LPT 的 TET 为 1144 K。燃油消耗(s.f.c.)低于其他发动机,寿命长,可靠性高。RB-211-524G/H Trent-882 JT-9D-7R4公司劳斯莱斯(英国)劳斯莱斯(英国)普惠(美国)自 1990 年 2 月开始使用 1994 年 8 月(认证)1969 年 2 月(首次)首次飞行于 747-400 和 767-300 波音 777 波音 747/767、A310描述三轴轴向 TF 三轴 TF 双轴 TF 重量(干重)4479 千克 5447 千克 4029 千克总长度 3175 毫米 4369 毫米 3371 毫米进气口/风扇直径 2192 毫米 2794 毫米 2463 毫米压力比 33 33+ 22 涵道比 4.3 4.3+ 5 TO 推力 269.4 kN 366.1 kN 202.3 kN 巡航推力 52.1 kN 72.2 kN 176.3 kNS.F.C.15.95 mg/N-s(巡航) 15.66 mg/N-s(巡航) 10.06 mg/N-s 空气质量流量 728 kg/s 728+ kg/s 687 kg/s FADEC(Y/N) 否 是 否其他信息 合同中(截至 1995 年 9 月)世界上功率最强大的传统空调发动机(Trent 772) *FADEC - 全自动数字发动机控制 • 降低燃油消耗。• 通过与飞机计算机交互,更好地控制发动机并减少飞行员的工作量。• 降低飞机运营成本。分析理论可参见 [3]。低推力级涡扇发动机 (< 200 kN)(根据 [2] 修改)3 CFM56-5C2 JT-8D-17R V 2500-A1公司 CFM International (法国) & GE (美国)Pratt & Whitney (美国) Intl.航空发动机(美国) 自 1992 年底 1970 年 2 月 1988 年 7 月开始使用 首次飞行于空客 A-340 波音 727/737 和 DC-9 空客 A-320 描述 双轴亚音速 TF 轴流双轴 TFT 双轴亚音速 TF 重量(干重) 2492 千克(裸机)3856 千克(约)1585 千克 2242 千克(裸机)3311 千克(带动力装置) 总长度 2616 毫米 3137 毫米 3200 毫米进气口/风扇直径 1836 毫米 1080 毫米 1600 毫米压力比 37.4 17.3 29.4涵道比 6.6 1.00 5.42TO时推力 138.8 kN 72.9 kN 111.25 kN巡航时推力 30.78 kN 18.9 kN 21.6 kN S.F.C.16.06 mg/N-s 23.37 mg/N-s 16.29 mg/N-s空气质量流量 466 kg/s 148 kg/s 355 kg/sFADEC(Y/N) 是 否 是其他信息 4 GE-90涡扇发动机循环分析 以下是借助计算机程序进行的简单高涵道比涡扇发动机循环分析的结果。可以从[4]中获得更广泛和准确的分析。GE90 发动机的可用数据仅限于其起飞推力、涵道比 (BPR) 和总压比 (OPR)。其余数据是暂定的,是基于其他类似的 GE 发动机(如 CF6-80C2 和 CFM56)并考虑了适当的改进而假设的。发动机数据进气效率 = 0.980风扇多变效率 = 0.930压缩机多变效率 = 0.910涡轮多变效率 = 0.930等熵喷嘴效率 = 0.950机械效率 = 0.990燃烧压力损失(比率) = 0.050燃料燃烧效率 = 0.990热喷嘴面积 = 1.0111 m2冷喷嘴面积 = 3.5935 m2设计点(巡航)非设计点(起飞)高度(km)10.668 0.000马赫数0.850 0.000RAMPR 1.590 1.000FPR 1.650 1.580LPCPR 1.140 1.100HPCPR 21.500 23.000OPR 40.440 39.970Pa(巴)0.239 1.014Ta(K)218.820 288.160Ca(米/秒)252.000 0.000BPR 8.100 8.400TIT(K)1380.000 1592.000ma(千克/秒)576.000 1350.000推力(kN)69.200 375.300m f(千克/秒)1.079 2.968SFC(毫克/氮-秒)15.600 7.910Sp。推力 (N-s/kg) 120.100 278.100 计算得出的巡航推力值与配备两台 GE90 发动机的波音 777 飞机所需的推力非常接近,即每台发动机约 65-70 kN。GE 于 1990 年 1 月宣布开发 GE90。总体而言,这些发动机的运行时间超过 5,000 小时,包括在 GE 改装的波音 747 飞行试验台上的 228 小时飞行时间。GE90 耐力发动机完成了超过 14,000 个循环,并表现出出色的分段耐久性。(489 kN) 的推力。93759555539.pdf 5 设计点运行图(巡航)推力和 SFC 与 FPR 的关系 64 65 66 67 68 69 70 1.40 1.43 1.46 1.49 1.52 1.55 1.58 1.61 1.64 1.67 1.70 1.73 1.76 1.79 FPR 推力 ( kN) 15.50 15.75 16.00 16.25 16.50 16.75 17.00 推力 SFC 推力和 SFC 与 OPR 的关系 66 68 70 72 74 76 78 20 22 24 26 28 30 32 34 36 38 40 42 44 46 OPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 推力 SFC 6 推力 & SFC vs BPR 50.0 57.5 65.0 72.5 80.0 87.5 95.0 102.5 110.0 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 BPR 推力 ( kN) 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0推力 SFC 推力和 SFC 与 TIT 40 50 60 70 80 90 100 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 TIT (K) 推力 ( kN) 15 16 17 18 19 20 21 推力 SFC 7 认证 ([1] 和 [2]) 里程碑 日期 事件 1992 年 11 月 首次核心测试 1993 年 3 月 第一台发动机以 377.8 kN 推力进行测试 1993 年 4 月 第一台发动机以 468.5 kN 推力进行测试 1993 年 12 月 第一个 GE90 飞行试验台在波音 747 上飞行 1994 年 11 月 GE90 认证388.8 kN 推力 1994 年 12 月 首次波音 777 飞行测试 1995 年 8 月 波音 777/GE90 飞机认证 1995 年 9 月 波音 777/GE90 投入使用 GE90 地面和飞行测试 - 随着 GE90 获得 FAA 认证,GE 航空发动机公司完成了有史以来由发动机制造商进行的最广泛的地面和飞行测试项目之一。1992 年 11 月,第一台全尺寸发动机核心机开始测试;随后,1993 年 3 月,第一台完整的发动机问世。unisolve_pharmacy_software_manual.pdf 从那时起,GE 及其收益分享参与者共运行了 13 台开发发动机,这些发动机验证了发动机固有的设计优势。七台发动机的推力超过 100,000 磅。(444.5 kN),其中一台发动机的推力达到创纪录的 110,000 磅。事实上,GE90 开发发动机的推力水平已超过 100,000 磅。(444.5 kN),持续超过 65 小时。作为所需认证测试的一部分,GE90 成功完成了 2.5 磅和 8 磅。(1.13 和 3.63 千克) 的发动机复合叶片鸟类吞食测试。1994 年 10 月,四只 2.5 磅的鸟被吸入,发动机以产生 85,000 磅(377.8 kN) 推力所需的速度运行,在炎热的天气下起飞。没有推力损失,发动机在吸入后所需的 20 分钟运行期间响应所有油门命令。所有风扇叶片都处于良好状态,并继续在其他发动机测试中运行。1994 年 11 月中旬,GE 在 FAA 的陪同下进行了风扇叶片脱落测试。34042629589.pdf 为什么要使用全新发动机?释放叶片在风扇转速为 2,485 rpm 时引爆,比目标高出 10rpm,发动机产生超过 105,000 lb。(466.8kN) 的海平面静态 (SLS) 校正推力。发动机支架系统按设计运行,测试展示了风扇叶片的遏制力。复合材料风扇叶片的坚固性得到成功展示,8 观察到的尾部叶片损坏与测试前分析相符,验证了复合材料叶片设计的固有优势。GE90 于 1993 年底首次飞行,安装在 747 飞行试验台上。在整个测试的第一阶段,发动机在 45 次飞行中累计运行近 228 小时。发动机性能异常出色,性能水平超出规格,并在整个飞行包线内为飞行员提供不受限制的油门运动。市场需求 从历史上看,飞机的重量和推力要求一直在增长。低底盘汽车展评判评分表 如今,市场青睐重量更重、航程更长且内置推力增长的飞机。增长图 1 增长图 2 上述增长图显示,趋势有利于采用 GE90 动力的大型宽体飞机。为航空公司的未来做好准备 • 适用于整个新型大型飞机系列的通用发动机。• 新型宽体飞机所需的推力比当今的发动机高 20-30%。• 飞机历史上需要 20-30% 的额外推力来增加 TOGW。现代循环设计具有内置的总体性能优势 • 比当今的发动机高 10% 的 SFC。• 具有通用性的高推力增长。• 低噪音和排放。结合“经验教训”的成熟技术的可靠性。GE90 设计 GE90 的设计目的在于: • 推力增长。• 777 飞机系列的发动机通用性。• 燃油效率。• 180 分钟 ETOPS(延长双发运行)。9 • 低排放。• 低噪音。• 降低运营成本。选择循环以节省大量燃料。其余的乘法和除法依次为 • 优化了旁通比。• 优化了总压比。• 为最低 SFC 和燃油消耗而设计。10.sinıfya coru bankası pdf 选择的设计可最大限度地提高航空公司的利益。• 设计和演示高可靠性技术。• 以 CF6 和 CFM56 可靠性为基础。• ETOPS 批准。• 运营商开发的维护程序。• 低噪音和低排放设计。• 最低运营成本设计。发动机尺寸符合未来飞机的要求。• 初始认证为 84,700 磅。(533.4 kN)。复合材料风扇 2。(376.5 kN) 推力 - 1995 年 2 月• 首次增长认证为 92,000 磅。(408.9 kN) 推力 - 1996 年 5 月。• 可能增长到 120,000 磅。高推力和测试经验总结• > 422.3 kN 下运行超过 145 小时• > 435.6 kN 下运行超过 95 小时• > 440.0 kN 下运行超过 75 小时• > 444.5 kN 下运行超过 65 小时• > 444.5 kN 下在 900-105/1A 上连续运行 20 小时 注:海平面静态 (SLS) 校正推力水平 八台 GE90 发动机已在 445 kN 或以上的 SLS 推力下运行。进行了各种测试• 风扇测绘。• 助推器应力调查。• 超速认证 (490.3 kN)。• 三重红线块测试的“彩排”。• 1.13 kg 伯德认证/叶片脱落认证。10 发动机及其部件 ([2]) GE-90 涡扇发动机(横截面图)以下是发动机的主要部件 - 1.低压压缩机 (LPC)/助推器3.高压压缩机 (HPC)4. bugavufawenesa.pdf 双圆顶燃烧室5.高压涡轮机 (HPT)6.低压涡轮 (LPT) 11 复合材料风扇 GE90 风扇设计 风扇图 • 22 复合材料宽弦叶片和平台。• 大风扇直径,可实现更高的空气流量。• 风扇齿轮传动 - 降低风扇叶尖速度,从而产生更少的噪音。• 低叶尖速度和压力比,实现安静高效的运行。• 轻质三网盘,便于检查,重量更轻。• 混合(锥形/椭圆形)旋转器,减少核心碎片的摄入。• 风扇压力比 (FPR) 约为 1.60-1.65(暂定)。GE90 风扇叶片 风扇叶片 • 宽弦复合材料风扇 - 高性能、低重量。• 环境阻力 - GE90 风扇材料系统表现出与当前飞机复合材料相同的环境阻力。12 • GE90 风扇复合材料系统与目前在用的风扇复合材料系统类似。• 完全暴露在航空液体中的层压样品通常可保持 95% 的基本性能。• 实际叶片完全受聚氨酯涂层保护。• 不暴露于紫外线辐射。复合材料风扇开发历史• GE90 复合材料叶片受益于 25 年的开发。• 材料、制造和计算方面的进步提供了必要的技术。燃烧室 • 成功的先进军用项目的双圆顶环形燃烧室。• 降低 NOX 排放水平(低至 10 ppm。)。• 降低未燃烧的碳氢化合物、一氧化碳和烟雾水平。• 提高可操作性。• 长寿命衬套结构。• 圆顶气动热调节功率设置。• 高度重新点火能力 30,000 英尺(9.144 公里),有裕度。14 涡轮机涡轮图 HP 涡轮叶片 - 分别为第 1 级和第 2 级。los baker van a peru book pdf 13 压缩机 压缩机图 第一级 HPC 叶片 •结构类似于成功的 CFM56。•紧凑的发动机结构。•坚固的低纵横比翼型。•减少零件数量。•降低运营成本。•短 LPC/助推器 - 3 个阶段。•LPC 压力比(LPCPR)约为 1.10-1.14(暂定)。•低 LPT 入口温度以增加推力。•10 级 HPC,压力比为 23:1(HPCPR)。•NASA 节能发动机(E3)的放大在测试单元和飞行测试中展示了性能和可操作性。• 高压涡轮机采用了成熟的设计技术。• 6 级 LPT 和 2 级 HPT。• 刚性、简单支撑的转子系统(如 CFM56)可实现动态稳定性。• 仿照成功的 CF6-80 设计而构建的无螺栓组装翼型和罩壳冷却回路。• 从成熟的涡轮机经验中引入薄膜冷却技术。• 多孔涡轮冷却技术 - 冷却效果更佳。• 成功的 CF6-80 设计和被动间隙控制系统功能。• 具有激光钻孔冷却孔图案的第 1 级 HPT 叶片铸件(材料 N5)。• 具有激光钻孔冷却孔图案的第 2 级 HPT 叶片(材料 N5)。• 基于 CFM56 和 CF6-80 设计的模块化喷嘴组件。15 其他特点 ([2]) GE90 与环境 减少排放和烟雾 • 双圆顶燃烧室。• 降低噪音。• 低风扇压力比和大纵横比低压涡轮。• 总体降低任务总燃料消耗 = 降低任务总污染物。• 推力与核心流量比更高。GE90 燃烧室提供更好的可操作性,同时降低排放水平 • 双环形燃烧室。• 飞行员圆顶针对可操作性进行了优化 - 主圆顶针对高功率进行了优化。• 减少排放 基于 15 年的 NASA 和先进军用发动机开发。• 全面的 GE90 测试。• 出口温度曲线符合设计意图。• 已验证排放水平。可运输性• 专为标准发动机运输方法而设计。GE90推进器• 比当今的高涵道比涡扇发动机更小 GE90模块化设计• 仅允许更换推进器• 将推进器/喷嘴与风扇定子模块分开• 风扇定子模块保留在主基座或飞机上• 拆卸和更换时间估计少于6小时 16 GE90的未来 ([2]) 推力增长GE90组件的尺寸适合增长。如果市场需要,110,000磅。通过进一步投资,GE90可以产生110,000磅(511千牛)的推力。通用电气打算通过以下方式实现推力增量 - • 376.5千牛风扇认证发动机。B777“B”市场。• 422.3 - 435.6 kN 风扇改进的涡轮机械。18 参考文献 1.• 409 kN 风扇改进的 LPT 材料。增强的 HPT 冷却和第一级叶片 TBC。B777“B”市场。B777 拉伸。• 466.8 kN 风扇带有分离式核心的更高 P/P 风扇。• 511.2 + kN TF带有分离式核心的更高速度和 P/P 风扇。17 结论可以看出,GE90 确实是 90 年代最强大、最高效的商用运输发动机。85086163020.pdf 它还具有足够的推力增长空间,以满足未来的需求。虽然无法获得有关该发动机的确切技术信息,例如其重量、压力比、TIT、巡航推力、sf.c 等。导致本报告中的数据具有不确定性,但与其他发动机的比较清楚地表明,在推力和燃油效率方面,该发动机是独一无二的。