在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
Tarter, D., Nutter, B. (2022)。Haar 小波树的快速编码。IEEE 数据压缩会议论文集。Parmar, H.、Nutter, B.、Long, R.、Antani, S.、Mitra, S. (2021)。使用 t-SNE 可视化 fMRI 的时间脑状态变化。医学影像杂志,8 (4)。Parmar, H.、Nutter, B.、Long, R.、Antani, S.、Mitra, S. (2020)。使用深度学习 3D-CNN 对 fMRI 数据进行阿尔茨海默病的时空特征提取和分类。医学影像杂志。Nutter, C.、Nutter, B. (2020)。在竞争性录取专业中取得成功。全国学生保留研讨会论文集。学生保留和数据交换联盟。 Bazgir, O.、Walden, E.、Nutter, B.、Mitra, S. (2020)。一种用于量化代谢物浓度的新型数据驱动磁共振波谱信号分析框架。算法。Johnston, D.、Nutter, B.、Gale, R. (2020)。通过新颖的 S 参数测量技术进行 IC 辨别。IEEE 国际仪器和测量会议论文集。Parmar, H.、Mitra, S.、Nutter, B.、Long, R.、Antani, S. (2020)。使用 t-SNE 可视化和检测大脑状态的变化。IEEE SSIAI 论文集。Parmar, H.、Nutter, B.、Mitra, S.、Long, R.、Antani, S. (2020)。用于阿尔茨海默病分类的 fMRI 的体积 3D CNN 深度学习。 SPIE 医学成像论文集。Rizkalla, M.、Patnala, M.、Yadav, A.、Williams, J.、Gopinath, A.、Nutter, B.、Ytterdal, T. (2020)。GaN TFET、FinFET 和 GNRFET 技术中 8T 静态 RAM 单元的低功耗高速性能——综述。固态电子学,163。Parmar, H.、Nutter, B.、Long, R.、Antani, S.、Mitra, S. (2019)。基于主成分分析从 4D fMRI 数据中自动消除信号漂移和全局波动作为 fMRI 数据分析的主要预处理步骤。SPIE 医学成像论文集。Gupta, S.、Petrie, C.、Rao, V.、Nutter, B. (2018)。智能校园 HVAC 系统的节能控制方法。IEEE 绿色技术会议论文集。 Parmar, H., Liu, X., Nutter, B., Mitra, S. (2018)。f-SIM:使用数字脑模型和建模噪声的准现实 fMRI 仿真工具箱。IEEE SSIAI 2018 论文集。Bazgir, O., Mitra, S., Nutter, B., Walden, E. (2018)。磁共振波谱中的全自动基线校正。IEEE SSIAI 2018 论文集。Liu, X., Nutter, B., Mitra, S. (2018)。用于研究稳健功能连接的人类大脑高同质性功能分区。IEEE SSIAI 2018 论文集。专利