西南渔业科学中心(SWFSC)具有广泛的研究和服务组合,旨在履行其根据《马格努森 - 斯文森渔业保护法》(MSA),《美国濒危物种法》(ESA),其他联邦法律和国际条约的义务。我们通过支持太平洋渔业管理委员会(包括其鲑鱼技术团队),以及通过我们对NMFS西海岸地区办公室和其他Comanagers的支持来积极与渔业和相关资源经理互动。部落团体(例如Yurok,Hoopa,Karuk和Winnemem Wintu部落)。我们旨在生产信息和科学工具,这些信息和科学工具将对资源经理和其他有关方面有用,并促进NOAA的保护和可持续性目标。
Berry相[1]通过绝热循环过程后获得的相位揭示了量子波函数的几何信息,它的概念为理解许多材料的拓扑性质奠定了基础[2–13]。Berry相理论建立在纯量子态上,例如基态符合零温统计集合极限的描述,在有限温度下,密度矩阵通过将热分布与系统所有状态相关联来描述量子系统的热性质。因此,将Berry相推广到混合量子态领域是一项重要任务。已有多种方法解决这个问题[14–21],其中Uhlmann相最近引起了广泛关注,因为它已被证明在多种一维、二维和自旋j系统中在有限温度下表现出拓扑相变[22–26]。这些系统的一个关键特征是 Uhlmann 相在临界温度下的不连续跳跃,标志着当系统在参数空间中穿过一个循环时,底层的 Uhlmann 完整性会发生变化。然而,由于数学结构和物理解释的复杂性,文献中对 Uhlmann 相的了解远少于 Berry 相。此外,只有少数模型可以获得 Uhlmann 相的解析结果 [ 22 – 30 ] 。Berry 相是纯几何的,因为它不依赖于感兴趣量子系统时间演化过程中的任何动力学效应 [ 31 ] 。因此,Berry 相理论可以用纯数学的方式构建。概括地说,密度矩阵的 Uhlmann 相是从数学角度几乎平行构建的,并且与 Berry 相具有许多共同的几何性质。我们将首先使用纤维丛语言总结 Berry 相和 Uhlmann 相,以强调它们的几何特性。接下来,我们将给出玻色子和费米子相干态的 Uhlmann 相的解析表达式,并表明当温度趋近于零时,它们的值趋近于相应的 Berry 相。这两种相干态都可用于构造量子场的路径积分 [32 – 37]。虽然单个状态中允许有任意数量的玻色子,但是泡利不相容原理将单个状态的费米子数限制为零或一。因此,在玻色子相干态中使用复数,而在费米子相干态中使用格拉斯曼数。玻色子相干态也用于量子光学中,以描述来自经典源的辐射 [38 – 41]。此外,相干态的Berry相可以在文献[ 42 – 45 ]中找到,我们在附录A中总结了结果。我们对玻色子和费米子相干态的 Uhlmann 相的精确计算结果表明,它们确实携带几何信息,正如完整概念和与 Berry 相的类比所预期的那样。我们将证明,两种情况下的 Uhlmann 相都随温度平稳下降,没有有限温度跃迁,这与先前研究中一些具有有限温度跃迁的例子形成鲜明对比 [ 22 – 30 ] 。当温度降至零度时,玻色子和费米子相干态的 Uhlmann 相接近相应的 Berry 相。我们对相干态的结果以及之前的观察结果 [ 22 , 24 , 26 ] 表明,在零温度极限下,Uhlmann 相还原为相应的 Berry 相。
图 2。通过离子交换剥离块状 MMT 和真空过滤 MMT 薄片分散体来制造独立式 MMT 膜的过程。(a) 块状 MMT 粉末。(b) 在红色激光束下对块状粉末进行离子交换剥离后形成的 MMT 薄片水分散体。(c) 通过真空过滤薄片分散体形成的独立式 MMT 膜。(d) MMT 的 XRD 图案,显示 (001) d 间距为 12.3 Å。(e) 剥离的 MMT 薄片的 AFM 图像和 (f) 剥离的 MMT 薄片的相应 AFM 高度分布,显示单层厚度。
本演讲中的陈述不是历史事实的陈述是前瞻性的陈述。这种前瞻性陈述包括但不限于关于:Vir Biotechnology的肿瘤学实体肿瘤组合,临床前管道和Pro-Xten TM掩盖TCE平台的治疗潜力,以及VIR Biotechnology的策略,计划和期望与之相关; VIR生物技术的CHD和CHB计划的治疗潜力,以及Vir Biotechnology的战略,计划和期望与此相关;生物技术对其他管道计划的期望和VIR生物技术的潜力; Vir Biotechnology的现金余额和预期的现金跑道; VIR生物技术对其肿瘤学和肝炎计划的临床开发计划和期望,包括用于正在进行的和计划的临床试验的方案和入学方案,潜在的合作机会,数据读数和演示文稿以及预期的时间表; VIR生物技术研究疗法的潜在益处,安全性和功效;人工智能和机器学习对VIR生物技术的研发工作的潜在影响;以及任何上述任何假设。诸如“目标”,“预期”,“相信”,“可以”,“期望”,“目标”,“打算”,“五月”,“计划”,“潜在”,“有前途”,“意志”,“意志”和类似的表达方式都旨在识别前瞻性陈述,尽管并非所有的前瞻性陈述都必须包含这些识别的词语。这些前瞻性陈述是基于VIR生物技术管理的信念,以及当前可用于管理的假设和信息。这种陈述反映了VIR生物技术对未来事件的当前观点,并受到已知和未知风险的影响,包括但不限于限制:意外的安全性或有效性数据或在临床试验或数据读数中观察到的结果; VIR生物技术与监管机构的计划互动的时间和结果;获得监管批准的困难;对于VIR Biotechnology的各种合作的预期收益是否可以实现,包括与其他可能是VIR生物技术竞争对手合作或以其他方式具有不同利益的公司合作的困难;获得制造能力的挑战;临床部位激活率或临床试验入学率低于预期;通过Vir Biotechnology的竞争对手以及预期或现有竞争的变化,成功开发和/或商业化替代产品候选者; VIR生物技术在努力中使用人工智能和机器学习,以设计下一代蛋白质以及其他研究和开发工作;实际支出的时间和数量,包括不限于Vir Biotechnology预期的GAAP R&D和SG&A支出;地缘政治变化或其他外部因素;以及意外的诉讼或其他争议。鉴于这些风险和不确定性,可能不会发生前瞻性陈述中提到的事件或情况。药物开发和商业化涉及高风险,只有少量的研发计划才会导致产品商业化。结果进行早期临床试验可能不会表明较晚或大规模临床试验的完整结果或结果,也不能确保监管批准。实际结果可能与预期的结果有所不同,并且变化可能是重要的。在公司向美国证券交易委员会提交的文件中讨论了可能导致公司实际结果与当前预期不同的因素,其中包括其中包含的“风险因素”的部分。这些前瞻性陈述不应被视为预测或诺言,也不应将其视为暗示任何迹象,保证或保证做出了这种前瞻性陈述的假设是正确或详尽的,或者在假设的情况下,在本演讲中完全指出。您被告知不要不依赖提出的科学数据或这些前瞻性陈述,这些陈述仅在本演讲之日起说明。除法律要求外,VIR Biotechnology没有义务公开更新任何前瞻性陈述,无论是由于新信息,未来事件还是其他方式。vir生物技术声称,保护安全港对1995年《私人证券诉讼改革法案》中包含的前瞻性陈述进行保护。
摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
• 杀虫剂和除草剂,可能来自农业、城市雨水径流和住宅用途等各种来源; • 无机污染物,天然来源,如盐和金属,可能来自自然界,也可能来自城市雨水径流、工业或生活废水排放、石油和天然气生产、采矿或农业; • 有机化学污染物,包括合成和挥发性有机化学物质,它们是工业过程和石油生产的副产品,也可能来自加油站、城市雨水径流和化粪池; • 放射性污染物,可能是自然产生的,也可能是由石油和天然气生产和采矿活动产生的。
摘要 - 由于高级集成电路的特征大小不断收缩,因此分辨率增强技术(RET)被利用来改善光刻过程中的可打印性。光学接近校正(OPC)是旨在补偿面罩以生成更精确的晶圆图像的最广泛使用的RET之一。在本文中,我们提出了一种基于级别的OPC方法,具有高面膜优化质量和快速收敛。为了抑制光刻过程中条件爆发的干扰,我们会提供一个新的过程窗口感知的成本函数。然后,采用了一种新颖的基于动量的进化技术,该技术取得了重大改进。我们还提出了一种自适应共轭梯度方法,该方法有望具有更高的优化稳定性和更少的消耗时间。此外,图形过程(GPU)被利用用于加速所提出的算法。我们将输出掩码从机器学习基于掩码优化流中作为输入和工作作为重新定位掩码的后过程。ICCAD 2013基准测试的实验结果表明,我们的算法在解决方案质量和运行时开销中均优于以前的所有OPC算法。
The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。
智能制造:CII全国智能制造与董事总经理董事长Dilip Sawhney先生印度Rockwell Automation India Ltd说:“智能制造是实现印度实现7.5万亿美元经济的目标的关键,对GDP贡献了25%,并使印度成为第二大全球制造业枢纽>有90%的领域公司是MSMES,竞争力对于创造超过1亿高技能的就业机会并将印度融入全球价值连锁店至关重要。”他强调,随着高级技术的发展,制造业,技能和高技能计划必须赋予劳动力的能力,以适应分析驱动的角色,推动经济增长和增值