马丁·塞利格曼教授被认为是当代最具影响力的心理学家、研究员和作家(Lyubomirsky,2011;Van Zyl & Du Toit,2013)。许多心理学家称他为积极心理学的“父亲”(Lyubomirsky,2011),因为他在 1998 年担任美国心理学会主席期间发表了就职演讲,呼吁人们以更“积极的方式”来理解心理学领域(Wong,2011b)。根据 Wong(2011a)的说法,塞利格曼的就职演讲重点呼吁人们理解和研究人性中的“善”或“卓越”,或者“是什么让快乐的人感到快乐”。这促使塞利格曼 (2002) 出版了《真实的幸福:利用新积极心理学实现持久满足的潜力》一书,他在书中指出,幸福是过上“愉快”、“美好”和“有意义的生活”的结果。
背景:利什曼原虫是一种细胞内原生动物寄生虫,它使用复杂的方法破坏哺乳动物宿主巨噬细胞的先天免疫反应。已发现许多因素会影响寄生虫致病性的严重程度。其中一个因素是 GP63,它是一组破坏宿主细胞信号传导机制的金属蛋白酶。目的:本研究旨在通过 CRISPR-Cas9 构建 PX-LMGP63 载体,用于利什曼原虫中的 GP63 基因敲除,作为一种潜在的利什曼化方法。方法:根据 GP63 的 mRNA 序列设计一对 gRNA。然后将退火引物克隆到线性化载体 PX-459 中并转化到 DH5 A 感受态细胞中。然后,使用基因特异性和载体引物进行 PCR 检测以确认菌落。此外,对构建的质粒进行测序以进行最终确认。结果:PCR证实了预期大小为270的条带。质粒测序显示gRNA789已连接到载体上。构建的结构被命名为PX-LMGP63,下一步将转染到前鞭毛体细胞中。结论:由于皮肤利什曼病在大多数国家流行并成为公共卫生问题,并且缺乏有效的利什曼病疫苗,使用CRISPR方法可能使未来获得有效的疫苗成为可能。
应对静止和治疗后复发的挑战在微生物学领域中至关重要。这项研究表明,在人和小鼠骨髓干细胞中估计有2-3个分裂后,Infantum和Donovani L. donovani寄生虫迅速静止。有趣的是,在巨噬细胞中未观察到这种行为,这是利什曼原虫寄生虫的主要宿主细胞。静止和非循环代谢状态的转录比较证实了基因表达的总体下降是静止的标志。静止的amastigotes显示出随着遗传改变而快速进化适应反应的尺寸和迹象。我们的研究进一步证明了这种静止状态会显着增强对治疗的抗药性。此外,通过静止的过渡与沙蝇的传播高度兼容,并增加了寄生虫感染细胞的潜力。总的来说,这项工作将骨髓中的干细胞确定为利什曼原虫静止的利基市场,对抗寄生虫治疗和毒力性状的获取具有重要意义。
摘要 - 利什曼尼亚人是向媒介传播的寄生虫疾病,对全球超过10亿人构成威胁。寄生虫的寄生虫靶细胞(例如巨噬细胞)复制。该疾病以各种形式表现出来,从局部皮肤利什曼病到威胁生命的内脏形式,在95%的情况下,这是致命的。当前的治疗依赖于越来越遇到抗药性的有毒和昂贵药物的侵入性给药。因此,必须为该疾病找到替代治疗方法。本文献综述的重点是替代治疗的最新进展,并旨在提出旨在解决当前局限性的各种策略,包括成本,毒性,脱靶效应,管理路线以及耐药性的出现。从概述现有批准的治疗方法及其特定限制开始,我们将治疗开发策略分为五个关键部分:(i)使用现有批准的治疗方法的组合疗法来增强效率并降低抵抗力; (ii)纳米颗粒制剂,可以将目标递送到感染的器官和提高的治疗效率上; (iii)药物重新定位,该策略已经促进了当前一半以上的治疗化合物的批准; (iv)与标准化学疗法结合使用的免疫调节,以增强治疗效率和较低的复发率; (v)通过低毒性,免疫调节特性和有效的抗寄生虫作用,通过结合了低毒性,表现出有希望的体外结果。总而言之,这篇综述概述了治疗开发的当前策略,在承认其局限性的同时,强调了它们对常规疗法的优势。
98 玉晶光电(厦门)有限公司GENIUS ELECTRONIC OPTICAL (XIAMEN) CO., LTD. 61 0 0 61
本文旨在探讨全球化世界中人工智能 (AI) 监管所带来的法律和政策挑战。人工智能技术的快速发展和广泛应用已经超越了地理界限,因此需要一个能够有效应对人工智能带来的挑战的全面法律框架。本文旨在研究在人工智能跨越国界的情况下,法律应如何保护和实现权利。此外,本文主张建立一个超国家的欧盟人工智能机构;它还研究了该机构的指导原则以及关键角色和职责。本文为未来几十年欧盟和全球化世界中关于人工智能监管的更广泛讨论做出了贡献。
印度理工学院曼迪分校的材料科学与工程技术学士 (B.Tech.) 课程将提供材料科学领域的综合教育,强调工程应用和就业技能。该课程重点关注可持续发展、可再生能源、城市采矿、量子技术和人工智能等新兴领域,将为学生提供传统和先进材料的理论知识和实践专业知识。该课程的实践研究体验模块将使学生能够弥合学术追求与现实世界工程之间的差距。该课程的毕业生将准备在半导体、制造业、汽车、能源和废物管理等行业担任领导角色。这个跨学科课程将迎合有兴趣探索科学与工程交叉点的学生。
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 5 月 5 日发布。 ; https://doi.org/10.1101/2020.05.04.077115 doi: bioRxiv preprint
利什曼病是一种被忽视的媒介传播疾病,由通过感染的沙蝇叮咬传播的利什曼原虫引起。目前的治疗方法有限,部分原因是它们成本高昂且副作用大,而且目前还没有可用的人类疫苗。沙蝇唾液已被研究作为抗利什曼原虫疫苗的潜在应用。唾液蛋白 PpSP15 是第一个针对 L. major 的保护性疫苗候选物。此外,PsSP9 已被引入作为针对 L. tropica 的高免疫原性唾液蛋白。在此,我们旨在开发一种有效的多价活疫苗来控制由两种主要物种 L. major 和 L. tropica 引起的皮肤利什曼病。因此,使用 T2A 接头将上述两种唾液蛋白整合到 L. tarentolae 基因组内作为安全的活载体。然后,在用 CpG 预先处理的 BALB/c 小鼠中评估了共表达 PpSP15 和 PsSP9 的重组 L. tarentolae 的免疫原性和保护作用,以对抗 L. major 和 L. tropica。在感染前后的不同时间点进行细胞因子测定、寄生虫负担和抗体评估后,在接种共表达 PpSP15 和 PsSP9 的重组 L. tarentolae 的小鼠中获得了有希望的保护性 Th1 免疫力。这是首次证明基于不同唾液蛋白组合的安全活疫苗对两种不同利什曼原虫感染攻击的效力的研究。
1伊朗设拉子式医学科学大学医学院寄生虫学和遗传学系; 2 IDISNA微生物学和寄生虫学系(纳瓦拉卫生研究所),C/ Irunlarrea 1,纳瓦拉大学,伊斯托图学院,西班牙帕姆普洛纳31008萨鲁德·萨鲁德·萨鲁德·萨鲁德学院; 3蛋白质组学单元,癌症研究中心(IBMCC/CSIC/USAL/IBSAL),西班牙Salamanca 37007; 4伊朗雅兹德的Shahid Sadoughi医学与卫生服务大学医学院免疫学系; 5北霍拉桑医学科学大学的媒介传播疾病研究中心,伊朗,伊朗; 6伊朗吉罗夫特医学科学大学医学院免疫学系; 7布什尔医学科学大学医学院微生物学和寄生虫学系,伊朗布什尔,伊朗和8个基础科学,传染病研究中心,设萨拉兹医学科学大学,伊朗Shiraz,伊朗,