f i g u r e 3的α-替丁氨酸和番茄和菌落形成单元(CFU)的含量取决于伪 - 裂圈系统的距离。α-替代(4 mM)。(a)在距人造根每5 mm的距离内,α-替丁氨酸和番茄的浓度。红色条代表α-替代的含量;紫色条代表番茄的内容。分别使用Tukey的测试分别为tomatine和tomatidine的内容分别表示统计上显着的差异(tomatine; tomatine; a - b)在统计上具有显着差异(p <.05)。(b)CFU在距人造根每5 mm的距离内在土壤中计数。蓝色条代表渗出条件,红色条代表α-替代的条件。使用Tukey的测试,不同的字母(A - C)表示菌落形成单元数的统计学显着差异(P <.05)。错误条表示标准偏差(所有样本,n = 4)。
14 N. Kanagaraj,Padmapriya Arumugam(2016),“ I-TSS:基于转换,使用随机生成的位图图像的转换,改组和替代的图像加密算法”,Springer-verlag-verlag-verlag,Verlag,verlag,verlag,polutect in Computer Science中和互联网技术,doi:10.1007/978-3-319-28034-9。sjr:0.25。
企业采用各种做法来披露其研发活动产生的知识,包括但不限于在科学期刊上发表研究成果、为新技术申请专利以及为制定标准做出贡献。虽然参与上述做法对企业创新的个别影响是众所周知的,但现有文献尚未考虑它们之间的相互关系。因此,我们的研究考察了这三种做法在企业向市场推出新产品创新方面的表现是互补的、替代的还是无关的。我们的分析基于德国社区创新调查中的创新活跃企业样本,其中包括有关标准制定的信息,并补充了企业参与专利和出版的信息。我们发现 26% 的创新活跃企业至少参与了这三种做法中的一种,22% 的参与企业将它们结合起来。使用超模性测试,我们表明出版和专利以及专利和制定标准是替代的。出版和制定标准没有显著的联系。根据我们的研究结果,我们得出了对创新管理和政策的启示。
评估实施人工智能工具所涉及的风险,例如幻觉、数据安全以及员工对工作替代的担忧。在起草人工智能使用政策时,要广泛考虑潜在和可察觉的风险,并找到缓解这些风险的方法。确保任何新技术都符合现有技术或安全政策以及技术基础设施标准。
14.30-14.50 Sergey Sayenko(A.S.újvChijes):磷酸镁磷酸镁的R&D矩阵(MPP)矩阵,可靠地将SM和ND作为次要的非律师替代的SM和ND可靠地固定为次要的非律师替代物,用于次要的AM和CM和CM和CM,以及AS AS AS AS AS AS AS AS AS tC。
1。引言在太阳能和地球的磁层等离子体中观察到的充电颗粒(Lin&Forbes 2000; Bhattacharjee 2004; Birn等2012; Fu等。2013; Chen等。2020)和实验室等离子体(Yamada等人1994; Hsu等。 2001; Fiksel等。 2009; Fox等。 2010; Yamasaki等。 2015; Tanabe等。 2017)经常与磁重新连接有关(Parker 1963; Priest&Forbes 2000),这是改变磁场拓扑的过程,从而允许爆炸的储存磁能。 高能密度激光生产的等离子体中的磁重新连接已得到广泛研究(Nilson等人。 2006,2008; Li等。 2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献1994; Hsu等。2001; Fiksel等。 2009; Fox等。 2010; Yamasaki等。 2015; Tanabe等。 2017)经常与磁重新连接有关(Parker 1963; Priest&Forbes 2000),这是改变磁场拓扑的过程,从而允许爆炸的储存磁能。 高能密度激光生产的等离子体中的磁重新连接已得到广泛研究(Nilson等人。 2006,2008; Li等。 2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献2001; Fiksel等。2009; Fox等。2010; Yamasaki等。2015; Tanabe等。2017)经常与磁重新连接有关(Parker 1963; Priest&Forbes 2000),这是改变磁场拓扑的过程,从而允许爆炸的储存磁能。高能密度激光生产的等离子体中的磁重新连接已得到广泛研究(Nilson等人。2006,2008; Li等。 2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献2006,2008; Li等。2007; Dong等。 2012; Fiksel等。 2014; Rosenberg等。 2015 a,b; Fox等。 2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。 2010,2016)。 尽管已经检测到高能电子,但其加速度的机制仍然很少了解。 此外,替代的贡献2007; Dong等。2012; Fiksel等。2014; Rosenberg等。2015 a,b; Fox等。2020)和等离子体加热以及超热能电子的存在已被记录(Zhong等人。2010,2016)。尽管已经检测到高能电子,但其加速度的机制仍然很少了解。此外,替代的贡献
o事件已通过医学评估; o讨论是与相关专家(例如,过敏症患者/免疫学家,SIC网络,健康官员等)进行的使用相同或替代的Covid-19疫苗对个人的风险和潜在免疫选择的益处; O相关专家已经确定该个人无法接收任何Covid-19-19。
应用程序(用于多体SC 183的资金)。在2020-2025财政年度的提示中,此项目被搁置了,行是2021财年。GPATS PC投票通过将该项目恢复为10/2019。项目被投票通过2022年5月GPATS PC会议被选中。流量和替代的小型购买合同