摘要:本文旨在评估从澳大利亚大型太阳能光伏 (PV) 发电厂通过长距离海底高压直流 (HVDC) 电缆进口到新加坡的电力的生命周期温室气体 (GHG) 排放。开发了一个成本优化模型来估算系统组件的容量。建立了一个全面的生命周期评估模型来估算这些组件的制造和使用排放量。我们的评估表明,要满足新加坡五分之一的电力需求,需要一个装机容量为 13 GW PV、17 GWh 电池存储和 3.2 GW 海底电缆的系统。这种系统的生命周期温室气体排放量估计为 110 gCO 2 eq/kWh,其中大部分来自太阳能光伏板的制造。电缆制造对温室气体排放的贡献并不大。通过改变满负荷时间和电缆长度,评估发现,距离新加坡较近的站点可能以相同/更低的碳足迹和更低的成本提供相同的能源,尽管日照量低于澳大利亚。但是,这些站点可能比澳大利亚的沙漠造成更大的土地使用变化排放量,从而抵消了较短高压直流电缆的优势。
。CC-BY 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2021 年 6 月 4 日发布。;https://doi.org/10.1101/2021.04.28.441825 doi:bioRxiv 预印本
对于通用量子计算,实际实施需要克服的一个主要挑战是容错量子信息处理所需的大量资源。一个重要方面是实现由量子纠错码中的逻辑门构建的任意幺正算子。通过组装从一小组通用门中选择的逻辑门序列,可以使用合成算法将任何幺正门近似到任意精度,这些通用门在量子纠错码中编码时可容错执行。然而,目前的程序还不支持单独分配基本门成本,许多程序不支持扩展的通用基本门集。我们使用基于 Dijkstra 寻路算法的穷举搜索分析了标准 Clifferd+T 基本门集的成本最优序列,并将其与另外包括 Clifferd 层次结构更高阶的 Z 旋转时的结果进行了比较。使用了两种分配基本门成本的方法。首先,通过递归应用 Z 旋转催化电路将成本降低到 T 计数。其次,将成本指定为直接提炼和实现容错门所需的原始(即物理级)魔法状态的平均数量。我们发现,使用 Z 旋转催化电路方法时,平均序列成本最多可降低 54 ± 3%,使用魔法状态提炼方法时,平均序列成本最多可降低 33 ± 2%。此外,我们通过开发一个分析模型来估计在近似随机目标门的序列中发现的来自 Clifford 层次结构高阶的 Z 旋转门组的比例,从而研究了某些基本门成本分配的观察局限性。
我们考虑在度量空间中定位设施以服务于一组自私代理的问题。代理的成本是她自己的位置与最近设施之间的距离。社会成本是代理的总成本。我们感兴趣的是设计无需支付的策略验证机制,该机制的社会成本近似率较小。机制是一种(可能是随机的)算法,它将代理报告的位置映射到设施的位置。如果在任何配置下没有代理可以从错误报告其位置中获益,则机制是策略验证的。这种设置最早由 Procaccia 和 Tennenholtz [21] 研究。他们专注于代理和设施位于实线上的设施博弈。Alon 等人研究了一般度量空间中设施博弈的机制 [1]。然而,他们专注于只有一个设施的游戏。在本文中,我们研究了一般度量空间中的双设施博弈,这扩展了之前的两个模型。我们首先证明确定性策略证明机制的社会成本近似比的 Ω(n) 下界。我们的下界甚至对线度量空间也成立。这显著改善了之前的常数下界 [21, 17]。请注意,线度量空间中有一个匹配的线性上限 [21]。接下来,我们提供了第一个常数近似比为 4 的随机化策略证明机制。我们的机制适用于一般度量空间。对于随机化策略证明机制,之前的最佳上限为 O(n),仅适用于线度量空间。