我们建议将概念阶段的飞机设计问题制定为几何规划 (GP),这是一种特殊类型的凸优化问题。凸优化的最新进展与飞机设计中通常使用的一般非线性优化方法相比具有显著优势。现代 GP 求解器速度极快,即使在大型问题上也是如此,不需要初始猜测或调整求解器参数,并保证全局最优解。这些好处是有代价的:所有目标和约束函数 - 描述飞机设计关系的数学模型 - 都必须在 GP 的受限函数形式内表达。也许令人惊讶的是,这种受限的函数形式集一次又一次地出现在流行的基于物理的飞机系统模型中。此外,我们表明,对于无法通过代数操作转换为 GP 所需形式的各种模型,我们通常可以拟合紧凑的 GP 模型,这些模型可以准确近似原始模型。GP 解决方法的速度和可靠性使其成为解决概念阶段飞机设计问题的一种有前途的方法。
我们建议将概念阶段的飞机设计问题制定为几何规划 (GP),这是一种特殊类型的凸优化问题。凸优化的最新进展与飞机设计中通常使用的一般非线性优化方法相比具有显著优势。现代 GP 求解器速度极快,即使在大型问题上也是如此,不需要初始猜测或调整求解器参数,并保证全局最优解。这些好处是有代价的:所有目标和约束函数 - 描述飞机设计关系的数学模型 - 都必须在 GP 的受限函数形式内表达。也许令人惊讶的是,这种受限的函数形式集一次又一次地出现在流行的基于物理的飞机系统模型中。此外,我们表明,对于无法通过代数操作转换为 GP 所需形式的各种模型,我们通常可以拟合紧凑的 GP 模型,这些模型可以准确近似原始模型。GP 解决方法的速度和可靠性使其成为解决概念阶段飞机设计问题的一种有前途的方法。
量子近似优化算法 (QAOA) 是一种利用量子计算解决组合优化问题的有前途的方法。MaxCut 问题上的 QAOA 已在具有特定结构的图上得到了广泛的研究,然而,对于该算法在任意图上的一般性能知之甚少。在本文中,我们研究了对于所有具有最多八个顶点的连通非同构图,不同图特征与 MaxCut 问题上深度最多为 3 的 QAOA 性能之间的关系。QAOA 成功的一些很好的预测因素与图对称性、奇数环和密度有关。例如,在八个顶点的图上,经过三次 QAOA 迭代后,对于不包含奇数环的图选择最优解的平均概率为 60.6%,而包含奇数环的图为 48.2%。这些研究生成的数据在一个可公开访问的数据库中共享,以作为 QAOA 计算和实验的基准。了解结构和性能之间的关系可用于识别可能表现出量子优势的组合问题类别。
随着世界向高度可再生能源系统转型,需要先进的工具来分析复杂的能源网络。然而,能源系统设计受到现实世界目标函数的挑战,这些目标函数由技术和社会经济议程的模糊组合组成,其局限性并不总是能够清楚地说明。因此,经济上次优的解决方案可能更可取。这里介绍了一种能够确定包含所有经济上接近最优解的连续体的方法,将能源系统建模领域从离散解转移到一个连续解范围可用的新时代。所提出的方法被用于研究欧洲电力系统模型的一系列技术和社会经济指标。发现近最优区域相对平坦,允许解决方案比最优略贵,但在平等、土地利用和实施时间方面更好。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
本文 1 旨在建立一个框架,指导一个由简单、专业化、自利的代理组成的社会解决传统上被认为是单一的单代理顺序决策问题。使用分散式方法集体优化一个中心目标之所以具有挑战性,是因为难以描述非合作博弈的均衡策略概况。为了克服这一挑战,我们设计了一种机制来定义每个代理的学习环境,我们知道对于该代理,全局目标的最优解与代理优化其自身局部目标的纳什均衡策略概况相一致。社会作为一个代理经济体发挥作用,代理通过相互买卖操作环境状态的权利来学习信用分配过程本身。我们推导出一类分散式强化学习算法,它们不仅适用于标准强化学习,还适用于选择半 MDP 中的选项和动态组成计算图。最后,我们展示了社会固有的模块化结构对于更有效的迁移学习的潜在优势。
本文介绍了一种解决离散优化 NP 难问题的新方法,该方法适用于实现硬件量子退火的量子处理器 (QPU,Quantum Processor Unit) 的架构。该方法基于在精确分支定界算法中使用量子退火元启发式算法来计算目标函数的下限和上限。为了确定下限,使用了一种定义对偶问题 (广义离散背包问题) 的拉格朗日函数的新方法,其值在量子机的 QPU 上计算。反过来,为了确定上限,我们以带约束的二元二次规划形式制定了适当的任务。尽管量子机生成的结果是概率性的,但本文提出的混合算法构建方法交替使用 CPU 和 QPU,保证了最佳解决方案。作为案例研究,我们考虑 NP 难单机调度问题,最小化延迟作业的加权数量。进行的计算实验表明,在解决方案树的根部已经获得了最优解,并且下限和上限的值仅相差百分之几。
社区储能系统 (CESS) 的概念对于高效、可靠地利用可再生能源以及在消费者之间灵活共享能源必不可少。本文提出了一种新方法,通过降低每日电力成本和最大限度地提高光伏能源的自用量来评估在住宅社区部署 CESS 的实际效益。为此,实施了一种基于深度学习的预测模型,即双向长短期记忆模型,以预测操作约束和依赖性。此外,开发了一种包含聚类和优化算法的混合优化技术,其中聚类算法确保用户组的适当组合以制定最佳控制策略。最后,将预测模型与混合优化算法相结合,以找到涉及 PV-CESS 能源利用的最优解。考虑不同情景,使用连续三天的能源需求和光伏发电的真实历史数据进行数值分析。结果表明,与单个 ESS 系统相比,CESS 相关的电力成本和自耗分别较低和较高,在所分析的三种情景中,每日电力成本分别下降了 21.89%、13.81% 和 7.66%。
本研究解决了飞机最终装配线 (FAL) 中操作员的工作分配问题。这些生产线主要是手动和定节奏的。由于未能按时交货可能会给制造商带来巨额罚款,因此满足每个工作站的进度安排至关重要。我们认为任何工作站要执行的任务都已经定义好,并且具有所需技能的操作员集合已经分配给每个工作站。优化问题的范围是一个工作站及其所有任务和操作员。所考虑的优化问题的目标是将所有任务分配给可用的操作员,同时尊重经济(节拍时间)和人体工程学约束。这个问题可以看作是资源受限项目调度问题 (RCPSP) 的一个特例。RCPSP 是一个强意义上的 NP 难题,这意味着没有可用的算法可以在合理的时间内为大规模工业实例找到最优解。在本研究中,我们开发了基于约束规划和整数规划模型的新优化方法来解决这个问题。为了利用时间缓冲区来管理工作过程中可能出现的延迟,目标是找到一个具有最小完工时间的时间表。
本文提出了一种基于条件风险价值的改进量子近似优化算法变体,用于解决投资组合优化问题。投资组合优化是一个 NP 难组合问题,旨在选择一组最优资产及其数量,以平衡风险和预期收益。所提出的方法使用 QAOA 来寻找最大化收益同时最小化风险的最佳资产组合,重点关注损失分布的尾端。引入了一种增强的 QAOA 假设,可在优化质量和电路深度之间取得平衡,从而加快收敛速度并提高获得最优解的概率。实验使用纳斯达克的历史股票数据进行,优化股票数量不同的投资组合。对于 16 只股票,我们的方法仅用 35 次迭代就实现了最佳成本值,而标准 QAOA 需要 700 次迭代。我们的方法优于其他方法,尤其是在问题规模增加时。
摘要 — 量子计算为更快、更有效地解决大规模、现实世界的优化问题铺平了道路,而这些问题对传统计算系统来说具有挑战性。例如,选择性旅行商问题 (sTSP) 在物流优化等领域很出名,并引起了研究界越来越多的关注,然而,它被称为 NP-Hard 问题。因此,解决 sTSP 非常复杂,因为优化函数可能带有指数数量的变量,一般无法在多项式时间内解决。为此,我们提出了一个量子退火框架,用于 sTSP 的时间限制和近乎最优的解决方案,克服了近期量子设备的硬件限制。特别是,我们提出了一个有效的汉密尔顿算子 (QUBO) 来对嘈杂的中等规模量子 (NISQ) 退火器上的 sTSP 复杂决策进行编码。此外,我们在 D-Wave 2000Q 量子硬件上获得的实验结果表明,可以获得多个实例的最优解。索引术语 — 量子计算、量子退火、优化和选择性 TSP。