什么是儿童健康检查?儿童健康检查有助于我们确保您的孩子健康成长。即使感觉良好,您的孩子也应定期参加这些检查,这一点很重要。儿童健康检查有助于我们了解您的孩子并尽早发现问题(例如生长、发育或其他医疗保健问题)。即使您的孩子因其他疾病而定期就诊,这些检查对于跟踪他们的成长和发育也很重要。如果可能,主要照顾者最好能参加这些检查。这些检查让您和您的提供者有机会相互了解、提出问题并获得答案。您的提供者将讨论一些重要主题。这些包括:
●高级威胁预防与Palo Alto基于云的威胁分析基础架构集成在一起,例如先进的URL过滤●现在,ML模型在实时造成效果上进行深入学习●首次ML模型专注于命令和控制(C2)策略,例如Cobalt Strike of Cobalt Strike of Cobalt Strike。停止了这些新策略的96%。对常规TP策略的改善48%●Pan-OS Nova(11.0)添加了ML模型,以专注于注射攻击。90%的攻击停止了未解决的系统,并在0天注射攻击方面提高了60%。●必须训练ML模型。帕洛阿尔托(Palo Alto)拥有最大的威胁分析,这要归功于野火和庞大的客户群。将来,通过更多的威胁模型,将改善云安全基础架构。
沼气植物的部署固有地取决于地理考虑。这项研究主张将地理数据与人工智能算法(称为Geoai)整合在一起,作为一种可靠的可靠方法,用于精确预期这些最佳位置。考虑到上述,这项研究努力预测为在农业中实施甘蔗沼气植物的最佳地点。通过利用涵盖物理,生物和人类方面的地理数据,以及使用六种不同的分类算法的利用(CART,C4.5,C5.0,Random Forest,XGBoost和GBM),性能比较变得很重要。训练阶段特别针对圣保罗的状态,由于其植物的浓度升高,其最有效的模型随后应用于Goiás状态。随机森林算法实现的杰出性能强调了其在描述Goiás甘蔗沼气植物部署的有利地点的功效。这种方法论方法在简化决策过程,描绘有利于甘蔗生产的沼气生产的地区有望,从而优化了生物量利用,并同时减轻了环境影响和安装支出。GEOAI的融合不仅促进了可再生能源的扩散,而且还为缓解气候变化而做出了实质性的贡献,从而促进了更广泛的全球能量转变。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
已经开发出一种优化工具来确定电转甲醇子系统(电解器、氢气和电池存储以及甲醇生产厂)的最佳配置和规模,以最大限度地降低电转甲醇生产成本。研究结果表明,并网配置比离网配置更具经济效益。对于 300,000 吨/年的甲醇生产能力,并网配置实现了 1,094 欧元/吨的甲醇平准成本 (LCOM),比离网配置低 20%。离网配置的最佳生产规模为 70,000 吨/年,LCOM 为 1,220 欧元/吨。对于并网配置,较大的工厂受益于规模经济,年产能为 100 万吨的工厂可获得 1,072 欧元/吨的 LCOM。
Layton,D。“ Chatgpt - 我们如何到达今天的位置 - GPT开发的时间表。” https://medium.com/@dlaytonj2/chatgpt-how-we-we-got-to-wher-we-we-are-today-a-timeline-timeline-fppt-development-f7a35dcc660e(2023)。Lubbad,M。“ GPT-4参数:无限制指南NLP的游戏规则改变者。”https://mlubbad.medium.com/the-ultimate-guide-to-gpt-4-parameters-verything-nything-to-to-to-to-to-to-about-about-about-about-about-about-nlps-changer-changer-109b87678555a(2023)。Shree,P。“开放AI GPT模型的旅程。”https://medium.com/walmartglobaltech/the-journey-open-open-ai-gpt-models-32d95b7b7fb2(2020)。
课程与教学回顾:我们的课程要求和课程设置符合明尼苏达州标准、共同核心 ELA 和国家共同核心艺术标准。学生每季度上课可获得一个学分。学生每季度每天上四门课。如果学生全勤并成功完成每门课程,他们将获得 64 个学分;PiM 艺术高中要求学生获得 56 个学分才能毕业。在这些学分中,学生在语言艺术和社会研究方面获得八个或更多学分。学生在数学和科学方面获得六个或更多学分。学生可以通过各种舞蹈课程获得所需的体育学分。要获得艺术认可 - 学生必须在其专业中获得 18 个或更多学分,包括核心必修课和选修课。
最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
