▪ 每个原子都有一个带电的子结构,由原子核组成,原子核由质子和中子组成,周围环绕着电子。(HS-PS1-1)▪ 元素周期表按原子核中的质子数水平排列元素,并将具有相似化学性质的元素放在列中。该表的重复模式反映了外层电子态的模式。(HS-PS1-1)▪ 物质在整体尺度上的结构和相互作用由原子内和原子间的电力决定。(HS-PS1-3),(HS-PS2-6 的次要部分)▪(NYSED)理想气体的概念是解释气体行为的模型。当真实气体处于低压和高温时,它最像理想气体。(HS-PS1-9)▪(NYSED)溶液具有可以定性和定量描述的特征性质。(HS-PS1-10)PS1.C:核过程
TimberTech 甲板旨在模仿实木的外观,与实木一样,不同板子的颜色和纹理图案会略有不同。这是故意为之,也是制造过程的一部分,使 TimberTech 甲板具有最逼真和最像木头的外观。这种变化纯粹是美观的,不会或不会影响产品的性能。TwinFinish、ReliaBoard 和 DockSider 旨在随着时间的推移自然风化,表面纹理图案将风化为更一致的颜色。大部分风化过程将在甲板使用的第一年内完成。注意 TimberTech 不适用于用作柱子、支撑柱、横梁、托梁或其他主要承重构件。TimberTech 必须由符合规范的下部结构支撑。虽然 TimberTech 产品非常适合甲板重新装板(拆除旧甲板表面板并在符合规范的下部结构上安装 TimberTech),但 TimberTech 板不能安装在现有甲板板上。布线
人工智能已然到来 尽管人们对人工智能的定义存在争议,但人工智能基本上就是能够执行需要人类智能的功能的机器。从机械计算器到 GPS 路线规划器,人工智能早已被广泛使用。但人工智能的新颖之处在于机器学习。它利用数据自学识别人脸、转录口语以及执行一系列其他特定任务;它获得的数据越多,就越好。它是 2010 年前半期多种因素汇聚的结果:改进的算法、大量的研发资金、结构化数据和提升的计算能力 3 — 自 1956 年人工智能正式诞生以来,计算能力提升了数万亿倍。4 在给定的功能中,机器学习的表现优于人类。这种新人工智能击败了国际象棋、复杂的围棋游戏、中国的斯普尼克号时刻 5 以及六人德州扑克中的顶级选手。6 关于最后一项,请考虑一下克劳泽维茨的话:“战争最像一场纸牌游戏。” 7 但游戏仅仅是试验台。机器学习
管理人工智能 (AI) 发明是政治议程中的重中之重,但如何定义和实证衡量它尚不清楚。我们比较了四种识别专利 AI 发明的方法,这些方法反映了对 AI 的不同理解和定义方式。使用 1990 年至 2019 年的美国专利,我们评估每种方法将 AI 认定为通用技术 (GPT) 的程度,并研究集中模式,这两者都是与政策相关的标准。这四种方法仅在 1.37% 的专利中重叠,规模各不相同,占 2019 年所有美国专利的 3-17% 之间。我们样本中最小的 AI 专利集由最近的 AI 关键字识别,最像 GPT,具有高水平的增长和通用性。所有四种方法都表明,人工智能发明集中在少数几家公司,证实了人们对市场竞争的担忧。我们的结果表明,政策实施可能并不简单,应该考虑多种分类方法,因为识别人工智能发明最终取决于如何定义人工智能。
摘要:人工智能世界似乎正处于快速转型之中,人们一方面声称通用人工智能是不可能实现的,另一方面又担心我们可能很快就会看到神一般的人工智能,我们应该对这种前景感到恐惧。本文从心理学和社会学的角度讨论了这些问题,并指出,随着生成人工智能的出现,人类认为的通用人工智能已经成为一种明显的可能性,而让它变得半自主的想法也是如此:它不仅能对离散的外部输入做出反应或执行特定的任务,还能促使自己创造一种持续的认知流,这种认知流可以拥有类似于“目的”的东西。再加上计算机能够连接到庞大的网络,我们可以设想拥有惊人知识和推理能力的智能,它们与人类互动,预测和实现愿望。这种半自主的神级人工智能(SAGAI,印地语中意为“交战”)最终可能会像迦梨一样,给我们这个物种带来死亡和毁灭,或者像雷神一样,成为人类的救世主和保护者。我们的 SAGAI 最像哪一种,可能取决于它是为了服务于谁的愿望而设计的:是追求更大财富和权力而不顾他人代价的富有寡头集团,还是对彼此和地球上的生命充满同情的民众。
对 AI 艺术工具有效性的研究表明,生成的图像与人造艺术品越来越难以区分,但感知价值却产生了不确定的结果。本研究实施了一种相关方法,通过将不同 AI 工具生成的图像与具有相似艺术风格的人造艺术品进行比较,探索它们与其感知价值和可区分性之间的关系。在给定的上下文中,价值被定义为审美欣赏、货币价值和感知意义。结果表明,昂贵的工具提供了最像人类的图像,但不是最有价值的图像,因为它们生成的作品最常被误认为是人类艺术品。不同 AI 工具之间的感知价值相似,并且在每个工具的评级之间产生了相当大的重叠。对于所有测量变量,人类艺术品的平均感知价值高于生成作品,但没有发现显着差异。提供的结果激发了对 AI 工具有效性的进一步研究。随着人工智能艺术工具不断发展,创造出更具感知价值的更像人类的图像,传统艺术的现状受到威胁,因为有些人认为人工智能艺术可能会贬低人类艺术。无论如何,通过技术实现的艺术发展可以打破传统艺术的现有障碍,为数字艺术家提供新的自由度。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
内布拉斯加州中北部的Niobrara河谷支撑了散落的纸桦树(Betula Papyrifera Marsh),这是一种更典型的北方森林物种。这些桦树林被认为是自威斯康星州冰川结束以来一直存在的遗物遗物,当时区域植物群在自然界中更加北方(Wright 1970,Kaul等)。,尽管没有记录发作日期。当前的死亡事件可能始于1980年代初期或之后。研究目标是了解桦木架相对于附近的气象站和历史天气状况,并评估单个桦树的当前健康状况。温度,并在2006年春季和2007年春季的13个额外的摊位中测量了单个桦树健康状况。桦木现场的微气候与内布拉斯加州情人节瓦伦丁国家气象服务站的数据进行了比较,以及在内布拉斯加州约翰斯敦以北24公里处的自然保护区尼奥布拉拉山谷的自动气象站。内布拉斯加州阿恩斯沃思(Ainsworth)的Val Entine站和另一个国家气象服务站的历史性天气数据用于重建自然保护区的最低温度和最高温度,并使用Kalman过滤和平滑算法来重建一个微气候监测站。桦木支架的微气候与当地气象站以及摊位之间不同。桦木健康与年度最低温度状态有关;那些每日每日最低温度风格的立场最像自然保护站,其中包含较小比例的活树。冻结/融化条件的频率能够诱发根部损伤和随后的冠状死亡的频率在记录时期的第二半(1978–2007)中有显着增加,因为COM将其排在了第一个半(1948-1977)。河位与桦木健康有关;上河站点的树木比北岸地点更健康。局部微气候
火星,与我们最像地球的行星邻居,正在向我们招手。其原始而多样的表面面积与地球陆地表面相等,展现出悠久而迷人的历史,其中不乏撞击事件、火山活动、地质构造以及风成、河流和冰川侵蚀。一个世纪前,天文学家认为他们正在目睹一个垂死的火星文明为应对气候变化的毁灭性影响而做出的最后努力。后来,火星上存在智慧生物的说法被打消,但简单生命形式可能存活下来的期望仍然存在。今天,在向火星发送机器人任务后,我们对这颗行星的看法与早期的浪漫猜想有着惊人的相似之处。我们从轨道航天器上得知,火星经历了剧烈的气候和地质变化。遥远的过去,水流过火星表面,在深深的河道和河流网络中留下了引人注目的证据。然而,今天我们发现这颗行星寒冷干燥。目前还没有证据表明火星上现在存在生命,但在火星温暖潮湿的过去,原始生命是真实存在的。因此,谜团依然存在:我们的类似地球的邻居是如何到达现在干旱、寒冷和几乎没有空气的状态的?生命进化然后灭绝了吗?它留下了化石记录吗?最后但并非最不重要的是,火星经历的变化能否让我们了解一些关于我们自己星球预测的巨大变化的信息?这些问题和其他问题促使科学家和工程师迎接向火星发射任务的巨大挑战。一艘前往火星的航天器必须经历 6 个月以上的旅程,以正确的角度和速度接近火星进入轨道,然后成功运行并返回宝贵的观测数据。有些任务失败了,但成功的回报远远超过了努力和风险。每次成功访问,我们对火星的了解都会大幅增加。四十年的太空观测产生的信息和知识比早期使用地球望远镜的天文学家所能想象的还要多。