摘要:缺血性心脏病(IHD)在心血管健康中构成了重大挑战,目前的治疗效果有限。在再生医学中诱导的多能衍生 - 心肌细胞(IPSC-CM)疗法为IHD患者提供了潜在的潜力,尽管其临床影响仍然不确定。这项研究利用荟萃分析在IHD动物模型研究中就疗效和安全性评估IPSC-CM结果。元分析包括PubMed,ScienceDirect,Web of Science和Cochrane Library数据库,从成立到2023年10月,研究了IPSC治疗对心脏功能和安全结果的影响。在51项涉及1012只动物的合格研究中,尽管存在很大的异质性,但与对照组相比,IPSC-CM移植量增加了8.23%(95%CI,7.15%至9.32%; P <0.001)。此外,基于细胞的治疗减少了左心室纤维化区域,并显示出减少左心室末端音量体积(LVESV)和舒张末期(LVEDV)的趋势。IPSC-CM治疗和对照组之间的死亡率和心律不齐风险没有显着差异。总而言之,这项荟萃分析表明IPSC-CM疗法的承诺是增强IHD心脏功能的安全和有益的干预措施。然而,由于观察到的异质性,必须通过基于严格的研究设计的大型随机对照试验进一步探索该处理的功效。
©作者2023。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。
此新闻稿包含前瞻性陈述,包括有关意图,信念或心脏期望的陈述。这些前瞻性陈述基于本文日期和某些假设的心脏可用的信息。因此,这种前瞻性陈述受到各种风险和不确定性的约束,这些风险可能导致实际结果与此类陈述中所示或暗示的结果显着差异。因此,建议读者不要对这些前瞻性陈述不依赖。本新闻稿中的信息截至本发行版的日期(或其他指定的日期),而心脏无义务有义务定期更新此处的信息。
背景:人类诱导的多能干细胞(HIPSC)的人类睾丸器官的产生为性腺发育生物学和生殖疾病建模提供了令人兴奋的机会。但是,创建类型的类器官,这些器官紧密模仿睾丸的组织结构仍然具有挑战性。方法:在这项研究中,我们建立了一种使用逐步分化方法以及悬挂掉落和旋转培养系统的组合从HIPSC生成睾丸器官(TOS)的方法。通过检测形态,单细胞RNA测序和蛋白质谱证实了HIPSC衍生的前体睾丸细胞自组装成类器官的能力。通过测量转录组特征和功能特征的测量,包括激素的反应性和血液杀伤性(BTB)形成,以及通过记录对生殖毒素生殖的细胞的细胞活力和BTB完整性来评估睾丸类器官作为药物评估模型的可靠性。最后,我们应用了睾丸类器官来评估半瓜肽是胰高血糖素样肽-1受体激动剂(GLP-1 RA)对睾丸功能的影响,从而强调了它们作为药物评估模型的实用性。结果:这些类器官表现出睾丸状结构和BTB功能。RNA测序和功能测定确认睾丸类器官具有促性腺激素调节的基因表达谱和内分泌功能,与睾丸组织的基因表达谱和内分泌功能非常相似。值得注意的是,这些类器官表现出对半卢比德的敏感性。用半卢宾治疗导致睾丸激素水平降低和INHBB表达的下调,与先前的临床观察一致。结论:这些发现引入了一种从人多能干细胞中产生睾丸器官的方法,突出了它们作为研究睾丸功能,药物毒性的有价值模型,以及Semaglutide等化合物对睾丸健康的影响。
1 Whiffle, Molengraaffsingel 8, 2629 JD 代尔夫特,荷兰 2 代尔夫特理工大学,工程系统与服务系,Jaffalaan 5, 2628 BX 代尔夫特,荷兰 3 代尔夫特理工大学,地球科学与遥感系,Stevinweg 1, 2628 CN 代尔夫特,荷兰
A reference induced pluripotent stem cell line for large-scale collaborative studies Authors and affiliations: Caroline B. Pantazis 1* , Andrian Yang 2-5* , Erika Lara 1* , Justin A. McDonough 6* , Cornelis Blauwendraat 1,7* , Lirong Peng 1,8,9* , Hideyuki Oguro 6,10 , Jitendra Kanaujiya 6,10 , Jizhong Zou 11 , David Sebesta 12 , Gretchen Pratt 12 , Erin Cross 12 , Jeffrey Blockwick 12 , Philip Buxton 12 , Lauren Kinner-Bibeau 12 , Constance Medura 12 , Christopher Tompkins 12 , Stephen Hughes 12 , Marianita Santiana 1 , Faraz Faghri 1,7,8 , Mike A. Nalls 1,7,8,Daniel Vitale 1,7,8,Shannon Ballard 1,7,8,Yue A. Kirwan 4,5,Venkat Pisupati 5,14,Steven L. Coon 15,Sonja W. Scholz 16,17,Theresa Priebe 18,MiriamÖttl18,Jian Dong 18,Marieke Meijer 18,Lara J.M.Janssen 18,Vanessa S. Lourenco 18,Rik van der Kant 18,19,Dennis Crusius 20,Dominik Paquet 20,21,Ana-Caroline Raulin 22,Guojun Bu 22,Aaron Held 23,Brian J.Wainger 23,Brian J.Wainger 24,Rebecca M.C.Gabriele 25,Jackie M Casey 25,Selina Wray 25,爸爸Abu-Bonsrah 26,42,Clare L. Parish 26,Melinda S. Beccari 27,Don W. Cleveland 27,Emmy Li 27,Indigo V.L.罗斯28,马丁运动28,劳林·海因里希30岁, Richa Basundra 32,Sarah Cohen 32,Richa Khanna 33: 35,Bruce R. Concinal 34,Katherine Johnson 22,莉莉·萨拉法(Lily Sarrafha)39,蒂姆自动相应的汽车
摘要:指定性白细胞营养不良(MLD)是一种罕见的神经退行性疾病,它是由于溶酶体酶芳基硫糖酶A(ARSA)的缺乏而引起的。在全球范围内,有40,000人中有160,000人患有这种疾病。虽然目前尚无对MLD的有效治疗方法,但诱导的多能干细胞衍生的脑器官具有更好地了解MLD发病机理的潜力。但是,开发脑器官模型昂贵,耗时,并且可能无法准确反映疾病的进展。使用人脑器官的准确且廉价的计算机模拟可以克服当前的局限性。人工诱导的全脑器官(AIWBO)有可能极大地扩展我们对MLD建模的能力并指导未来的湿实验室研究。在这项研究中,我们使用先前验证的机器学习平台DeepNeu(v6.2)升级和验证了人工诱导的全脑器官平台(Neuborg)。使用此升级的Neuborg,我们已经生成了MLD的AIWBO模拟,并提供了一种新的方法来评估与MLD发病机理,疾病进展和新的潜在治疗选择相关的因素。
摘要-由于储能技术的发展,不同的储能方式对电力系统的影响变得越来越重要。本文优化了基于风能的多能源系统 (MES) 的随机调度,并结合电力和热能需求响应程序以及三模式 CAES (TM-CAES) 单元评估了所提出的系统运行情况。所提出的风电一体化 MES 由 TM-CAES 单元、电锅炉单元和储热系统组成,可以与当地热网交换热能并与当地电网交换电能。使用蒙特卡罗模拟方法将电力和热能需求以及风电场发电建模为基于场景的随机问题。然后,通过将适当的场景简化算法应用于初始场景来减少计算负担。最后,将提出的方法应用于案例研究,以评估所提出方法的有效性和适用性。
作为Pit-Oct-unc(POU)域家族的转录因子,八聚体结合转录因子6(OCT6)参与干细胞发育和分化的各个方面。然而,目前,其在猪诱导的多能干细胞(PIPSC)中的作用尚不清楚。在这里,我们探索了PIPSC中OCT6的功能。我们发现,过表达OCT6的PIPSC在分化条件下保持了菌落的形态和多能性,其基因表达模式与非差异PIPSC的基因表达模式相似。功能分析表明,OCT6通过激活磷脂酰肌醇3-激酶蛋白激酶B(PI3K-AKT)信号传导活性来减轻细胞外信号调节激酶(ERK)信号传导途径对PIPSC多能性的不良反应。我们的研究阐明了OCT6促进PSC维护的机制。
抽象的胚胎干细胞具有无限制分裂的能力,并且是多发的,并且可以从三层新芽中区分细胞。高桥和山内卡(Yamanaka)在2006年的实验表明,可以通过添加一系列因子,即OCT4,SOX2,KLF4和C-MYC(Yamanaka因子)来获得诱导的多能干细胞(IPS细胞)。撰写本文评论的目的是回顾使用Yamanaka因素在获取社会研究细胞以造福临床使用的情况下的发展和挑战。文献搜索是通过在2006年至2019年浏览发表的期刊来进行的,该期刊讨论了与Yamanaka因素的产生社会研究细胞的生产。文献搜索结果表明,该因子是可以与染色质结合并导致染色质区域的先驱因子,并引起基因表达的激活或抑制。 C-MYC与参与细胞代谢,细胞周期法规和生物合成途径的基因结合。OCT4,SOX2和KLF4靶向编码发育和转录调节剂的基因。具有Yamanaka因子的体细胞诱导机制需要进一步搜索。到目前为止,社会研究细胞是由各种细胞产生的,并且有可能治疗各种疾病。来自社会研究细胞的临床试验已得到食品药品管理局(FDA)的批准。IPS细胞的应用具有许多障碍,例如效率低,高变异性和所使用的向量会导致突变。因此,为了获得有效,有效和安全的方法,需要进一步的研究与使用的方法相关。