在大多数微波管中,信号被放置在空腔间隙中,并且当电子面对最大对立时,电子被迫在时间上跨越间隙。在反对下跨越间隙会导致能量转移到空腔间隙信号中。当间隙电压是正弦的时间变化时,电荷紧身固定是连续且均匀的,通常是这种情况时,在腔体和越过间隙的电荷之间没有能量的净传递。这是因为在半周期中,当能量传递与上一半循环时,在半周期中相反,导致循环中无净能量转移。要具有从电子束到间隙信号电压的净能量传递,最大值的最大值将压缩的电荷被压缩到薄板或束中,因此它需要更少的时间来跨越间隙,并且安排了束束的束缚,以使峰值间隙电压处于峰值间隙电压,从而使束最大的反对面和降低信号从信号信号到信号上。
DEXO - 德克斯特附近的威拉米特河中支 (inst) DEXO - 德克斯特附近的威拉米特河中支 平均值 (1 天) 美国陆军工程兵团生物参考最大值* 美国陆军工程兵团生物参考最小值*
最近,纳米技术在解决环境问题(例如废水处理)中起着重要作用。金属氧化物(例如铜氧化物和锌氧化物)在水纯化中起作用。因此,这项工作旨在使用环保和成本效益的生物吸附剂从合成废水样品中去除甲基蓝色染料;铜\氧化锌双金属(CuO \ ZnO)是通过使用Fussarium oxysporum提取物合成的,并通过等温和动力学研究评估了生物吸附性能。通过UV-VIS分光光度计和透射电子显微镜(TEM)表征了生物合成的Cuo \ ZnO纳米颗粒。从TEM显微照片中,CuO \ ZnO粒径范围为9-40 nm,UV分光光度法显示在241 nm处的特征峰。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。 实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。
GPRO - 福斯特附近格林彼得湖下方的桑蒂亚姆河中游(inst) GPRO - 福斯特附近格林彼得湖下方的桑蒂亚姆河中游平均值(1 天) USACE 生物参考最大值* USACE 生物参考最小值*
输入 通道数 4,同时采样 配置 全桥、半桥或四分之一桥 分辨率 18 位 输入范围†见下表。 采样率 100 kSamples/sec(最大板速率 400 kS/s) 精度 积分非线性±0.0015% 偏移误差@25°C,G=2 0.0005% 典型值 增益误差@25°C,G=2 0.003% 典型值 偏移漂移/°C 2ppm 典型值 / 10ppm 最大 增益漂移/°Cz 2ppm 典型值 / 10ppm 最大 整体误差<250µV 桥接电阻120、350 或 1000 Ohm 抗混叠滤波器* 自动,72 dB 最小抑制 输入阻抗10 MegOhm,最小 激励输出 通道数每通道两个(P+、P-),可独立编程 输出电压0 至±10 Vdc(每个输出); 20Vdc 差分跨度 分辨率 16 位 输出驱动电流 50 mA,最大值 输出误差 ± 5 mV,最大值,测量精度与模拟输入相同 分流校准**(见下页注释) 分流范围 6.7 k 至 170k Ohm(拉力或压力)内部。还提供两个用于用户提供的分流电阻的连接。 分流分辨率 ~1.1 kOhm 分流读回精度** 返回读数的 ±0.02% 自动桥零位/平衡 零位/平衡范围 19 位分辨率 @ ±10V(自动零位 1 mV 最大值) 通用规格 电气隔离 350 Vrms,通道到通道和通道到底盘 工作温度 经测试 -40 °C 至 +85 °C 振动 IEC 60068-2-6 IEC 60068-2-64
摘要 蚯蚓堆肥是将有机化合物生物降解为有助于植物生长的营养腐殖质的传统方法。压泥是甘蔗工业的废弃物之一,具有丰富的有机成分。在本研究中,压泥与生物炭结合进行蚯蚓转化。使用 Eudrlius eugeniae 将不同浓度(0、2、4 和 6%)的压泥和牛粪以三种不同的比例(1:1、2:1 和 3:1)添加到生物炭中,以产生增强的蚯蚓堆肥。在添加生物炭的蚯蚓堆肥组合中,蚯蚓的生长和生物量都有所增加,其中添加 4% 生物炭的 C7(PM+CD(2:1)和添加 6% 生物炭的 C4(PM+CD(1:1))的蚯蚓生长和生物量均达到最大值。微生物和酶水平分析表明,添加生物炭的组合比未添加生物炭的组合效果更好。总体而言,添加 4% 生物炭的组合 C3(PM+CD(2:1)在微生物和酶分析中效果最好,在第 45 天达到最大值。添加生物炭的组合的腐殖化作用也更好,最终样品中腐殖化指数最低的分别是添加 4% 和 6% 的压泥+牛粪的 C3(0.6820±0.027)和 C4(0.6912±0.031)。这项研究表明,添加 4% 浓度的生物炭对蚯蚓堆肥的腐殖化作用优于未添加生物炭的组合。以压泥为基质的 6% 和 C3 与 C4 的组合对蚯蚓的生长和繁殖有较好的促进作用。基质的腐殖化活性在分别添加 4% 和 6% 生物炭的 C3 和 C4 组合中也达到最大值。关键词:蚯蚓堆肥、压泥、蚯蚓转化、生物炭、蚯蚓
双通道波形分析仪是复杂测量的关键设备。它可以以高达 10 MHz 的采样率测量电压和电流,并确定直流平均值、均方根值或峰值(高达 500 V 和 1 A)。与时间相关的测试参数包括频率、周期、时间间隔、脉冲宽度、占空比、上升和下降时间。可以从轨迹中确定事件(边缘、相对最大值/最小值)的数量和时间,也可以将轨迹与容差模板进行比较(图 3)。虽然传统的存储示波器基本上是为交互式视觉评估而开发的,但 AMV 的波形分析仪是为生产环境中的自动化、可重复测试而设计的。由于具有全面的触发功能,因此只有感兴趣的跟踪段会首先保存在 64 K 内存中,然后搜索所需的标准。通过预设的评估触发阈值和滞后,可以从受噪声或干扰损害的信号中清楚地确定实际事件,而不会将任何波动误解为最大值(图 4)。这些评估在 DSP 控制下的测试单元中以最佳速度运行。因此省去了耗时的跟踪下载。
我们研究了多方计算中的一个基本问题,我们称之为多百万富翁问题(MMP)。给定了一组私人输入输入,问题是要确定等于该集合的最大(或最小)的输入子集,而不会在输入上揭示超出所需输出所暗示的输入的任何进一步的信息。这样的问题是百万富翁问题的自然扩展,这是Andrew Yao的开创性工作中提出的第一个多方计算问题[30]。一个密切相关的问题是最大值的最大值。我们研究了这些基本问题,并描述了几种算法方法和解决方案方案。此外,我们比较了几个选定设置下的协议的性能。随着保护隐私计算的应用在工业系统中越来越常见,MMP和MAXP成为隐私保护统计,机器学习,拍卖和其他领域的重要组成部分。我们在这里提出的协议的优点之一是它们的简单性。由于他们解决了各种应用程序场景中必不可少的基础问题的基本问题,因此我们认为,这些问题的解决方案以及它们之间的比较将为未来的安全分布式计算的研究人员和实践者提供服务。
在工程(以及其他学科)的许多实际情况下,我们需要解决优化问题:我们想要一个最佳设计,我们想要一个最佳控制,等等。优化的主要问题之一是避免局部最大值(或最小值)。有助于解决此问题的技术之一是退火:每当我们发现自己处于可能的局部最大值时,我们都会以某种概率跳出并继续寻找真正的最优值。组织这种确定性优化的概率扰动的自然方法是使用量子效应。事实证明,量子退火通常比非量子退火效果好得多。量子退火是唯一使用量子效应的商用计算设备——D-Wave 计算机背后的主要技术。量子退火的效率取决于退火计划的正确选择,即描述扰动如何随时间减少的计划。根据经验,已经发现两种计划效果最好:幂律和指数计划。在本文中,我们通过证明这两个时间表确实是最优的(在某种合理的意义上),为这些实证成功提供了理论解释。