n 最小/最大日志:对于所有瞬时读数,记录自上次复位以来的最差相位,包括日期和时间戳。n 维护日志(两种型号):记录电能、输入/输出和需求复位、固件更新、电源故障和选件模块更改的日期和时间。n 报警日志(两种型号):记录所有用户定义的报警条件,并带有日期/时间戳,精度为 1 秒。n 计费日志和每间隔电能:记录 kWh 输入和总计、kVARh 输入和总计、kVAh 总计、PF 总计、kW 和 kVar 需求。记录间隔可由用户配置,范围从五分钟到一天。每间隔电能日志可跟踪每天最多三个用户可定义班次的使用情况和成本。n 可自定义数据日志:9340 上有一个,9360 上有三个。每个日志最多可记录 96 个用户可定义的参数。 n 趋势记录和预测 (9360):通过四条趋势曲线来显示能源和需求的平均值、最小值和最大值。以分钟、小时、天和月为间隔,提供每种量的最小/最大值和平均数据。预测功能“展望未来”,自动预测未来四小时和未来四天的平均值、最小值和最大值。提供按小时和周计算的统计摘要。
n 最小/最大日志:对于所有瞬时读数,记录自上次复位以来的最差相位,包括日期和时间戳。n 维护日志(两种型号):记录电能、输入/输出和需求复位、固件更新、电源故障和选件模块更改的日期和时间。n 报警日志(两种型号):记录所有用户定义的报警条件,并带有日期/时间戳,精度为 1 秒。n 计费日志和每间隔电能:记录 kWh 输入和总计、kVARh 输入和总计、kVAh 总计、PF 总计、kW 和 kVar 需求。记录间隔可由用户配置,范围从五分钟到一天。每间隔电能日志可跟踪每天最多三个用户可定义班次的使用情况和成本。n 可自定义数据日志:9340 上有一个,9360 上有三个。每个日志最多可记录 96 个用户可定义的参数。 n 趋势记录和预测 (9360):通过四条趋势曲线来显示能源和需求的平均值、最小值和最大值。以分钟、小时、天和月为间隔,提供每种量的最小/最大值和平均数据。预测功能“展望未来”,自动预测未来四小时和未来四天的平均值、最小值和最大值。提供按小时和周计算的统计摘要。
n 最小/最大日志:对于所有瞬时读数,记录自上次复位以来的最差相位,包括日期和时间戳。n 维护日志(两种型号):记录电能、输入/输出和需求复位、固件更新、电源故障和选件模块更改的日期和时间。n 报警日志(两种型号):记录所有用户定义的报警条件,并带有日期/时间戳,精度为 1 秒。n 计费日志和每间隔电能:记录 kWh 输入和总计、kVARh 输入和总计、kVAh 总计、PF 总计、kW 和 kVar 需求。记录间隔可由用户配置,范围从五分钟到一天。每间隔电能日志可跟踪每天最多三个用户可定义班次的使用情况和成本。n 可自定义数据日志:9340 上有一个,9360 上有三个。每个日志最多可记录 96 个用户可定义的参数。 n 趋势记录和预测 (9360):通过四条趋势曲线来显示能源和需求的平均值、最小值和最大值。以分钟、小时、天和月为间隔,提供每种量的最小/最大值和平均数据。预测功能“展望未来”,自动预测未来四小时和未来四天的平均值、最小值和最大值。提供按小时和周计算的统计摘要。
n 最小/最大日志:对于所有瞬时读数,记录自上次复位以来的最差相位,包括日期和时间戳。n 维护日志(两种型号):记录电能、输入/输出和需求复位、固件更新、电源故障和选件模块更改的日期和时间。n 报警日志(两种型号):记录所有用户定义的报警条件,并带有日期/时间戳,精度为 1 秒。n 计费日志和每间隔电能:记录 kWh 输入和总计、kVARh 输入和总计、kVAh 总计、PF 总计、kW 和 kVar 需求。记录间隔可由用户配置,范围从五分钟到一天。每间隔电能日志可跟踪每天最多三个用户可定义班次的使用情况和成本。n 可自定义数据日志:9340 上有一个,9360 上有三个。每个日志最多可记录 96 个用户可定义的参数。 n 趋势记录和预测 (9360):通过四条趋势曲线来显示能源和需求的平均值、最小值和最大值。以分钟、小时、天和月为间隔,提供每种量的最小/最大值和平均数据。预测功能“展望未来”,自动预测未来四小时和未来四天的平均值、最小值和最大值。提供按小时和周计算的统计摘要。
摘要:我们对大气流动的分层湍流和小尺度湍流状态进行了尺度分析,重点关注中间层。我们区分了旋转分层宏观湍流 (SMT)、分层湍流 (ST) 和小尺度各向同性 Kolmogorov 湍流 (KT),并指定了这些状态的长度和时间尺度以及特征速度。结果表明,浮力尺度 (L b ) 和 Ozmidov 尺度 (L o ) 是描述从 SMT 到 KT 的转变的主要参数。我们采用浮力雷诺数和水平佛劳德数来表征中间层的 ST 和 KT。该理论应用于高分辨率大气环流模型的模拟结果,该模型采用 Smagorinsky 型湍流扩散方案进行亚网格尺度参数化。该模型使我们能够推导出 KT 范围内的湍流均方根 (rms) 速度。研究发现,湍流 RMS 速度在夏季有一个最大值,在冬季有两个最大值。冬季 MLT 中的第二个最大值与二次重力波破碎现象有关。该模型得出的湍流 rms 速度结果与基于 MF 雷达测量的完全相关分析结果吻合良好。提出了一种基于中尺度直接能量级联思想的中尺度水平速度新尺度。后者对中尺度和小尺度特征速度的发现支持了本研究提出的观点,即中尺度和小尺度动力学在统计平均值上受 SMT、ST 和 KT 控制。
注意:面板 (a)、(b) 和 (c):显示了 100 次模拟中按时期 (横轴) 划分的价格 (垂直轴)。从下到上的线条分别表示每个时期价格分布的最小值 (细、黑色、实线)、25% 百分位数 (细、灰色、虚线)、中位数 (粗、黑色、实线)、75% 百分位数 (细、灰色、虚线) 和最大值 (细、黑色、实线)。结果针对静态伯特兰市场,其中有两家公司销售同质商品。结果针对公司 1。模型参数化如下。需求,如果 P ≤ 10,则 Q = 1,否则为零。边际成本 = 2。可行价格存在于一个网格中,该网格包含 100 个元素,间隔均匀,介于 0.1 和 10 之间(含 0.1 和 10)。A 对未来利润赋予零权重(未来折现为零)。更新中当前回报的权重由 α = 0 给出。1.初始条件为 i.i.d。对于每个公司的每个 W ( p ),从 U [10 , 20] 中抽取。在面板 (a) 中,仅显示每 10 个周期。在面板 (a) 中,5000 个周期后的最小值、25 百分位数、中位数、75 百分位数和最大值分别为:5.06、7.33、8.34、9.14 和 10。在面板 (b) 中,500 个周期后的最小值、25 百分位数、中位数、75 百分位数和最大值均等于 2.1291。在面板 (c) 中,500 个周期后的最小值、25 百分位数、中位数、75 百分位数和最大值分别为:2.0282、2.129、2.1291、2.23 和 3.84。面板 (d):在从 100 次运行中选择的单个模拟中,显示公司 1 的价格(垂直轴)按时期(水平轴)划分,以生成面板 (b)。空心浅灰色圆圈表示(选定的)W (p) 向下更新的价格。实心粗黑色圆圈表示(选定的)W (p) 向上更新的价格。
名称:基础科学 先修课程:矩阵代数及其行列式、单变量函数的最大值和最小值 教学方案 考试方案 学分分配 讲座:03 小时/周 学期末考试:60 分 讲座:03 辅导课:01 小时/周 内部评估:40 分 辅导课:01 总计:04 小时/周 总计:100 分 总计:04 课程成果 1 理解矩阵的秩并运用它来解线弧方程组 2 理解 DeMoiver 定理、双曲函数并将其应用于工程问题。 3 理解莱布尼兹规则并运用它来求函数的 n 次导数。 4 理解收敛、无穷级数的发散及其测试的基本概念。 5 理解偏微分的概念并运用它来求全导数。 6 评估任意两个变量函数的最大值和最小值。
抽象空间辐射是规划长期人类太空任务的主要关注点之一。有两种主要类型的危险辐射:太阳能颗粒(SEP)和银河宇宙射线(GCR)。两者的强度和演变都取决于太阳活性。GCR活性最大。GCR的降低仅在太阳能活动后仅6-12个月才能在太阳活动之后。SEP概率和强度在太阳能最大值期间最大化,并在太阳最小值期间最小化。在这项研究中,我们将由于SEP和GCR引起的粒子环境的模型与蒙特卡洛在航天器和幻影内的辐射传播模拟。我们包括从氢到镍的28个完全离子化的GCR元素,并考虑质子和9个离子物种来对SEP辐照进行建模。我们的计算表明,飞往火星的最佳时间将以太阳能最大值启动任务,并且飞行持续时间不应超过大约4年。
1 除非另有说明,所有传感器规格在 25°C、Vdd = 5V、绝对压力 = 966 mbar 和水平流动方向有效。 2 slm:在标准条件下(T = 20 °C,p = 1013.25 mbar)测量的质量流量,单位为升/分钟。 3 对于“典型值”,CpK 目标为 0.67(95% 的传感器在典型值限值内)。 4 对于“最大值”,超出此限值的传感器将不发货,CpK 目标为 1.33。 5 包括偏移、非线性、滞后。 6 总精度/噪声水平/分辨率是偏移和跨度精度/噪声水平/分辨率的总和。 7 精度适用于 T(气体)=T(芯片)。 8 %mv = % 测量值 = % 读数。 9 噪声水平定义为单个传感器读数的标准偏差,以全采样率测量(典型值:噪声水平的平均值;最大值:至少99.99% 的传感器的噪声水平低于指示值)10 如果适用,这些影响需要添加到初始值中
图1:2021年德国位置的可再生能源技术和常规发电厂的LCOE。使用每种技术的最低价值和最大值考虑特定的投资。PV电池系统的比率与可用电池可用容量(KWH)表示光伏电源输出(KWP)。