给定 u min 和 u max 之间的效用尺度,我们可以通过要求代理在 S 和标准彩票 [ p, u max ; 1 − p, u min ] 之间进行选择来评估任何特定结果 S 的效用。我们调整 p 直到它们的偏好程度相同。然后,p 就是 S 的效用。对每个结果 S 执行此操作以确定 U ( S )。
在2024年12月之前,该复合材料被称为核心最大化剂美国以收入为中心的增长。核心最大化器美国专注于60/40的复合材料与由3.6%彭博市政债券指数组成的定制混合基准进行比较标准普尔500指数。自定义基准是通过每天加权各个指数返回来计算的。核心最大化器美国专注的60/40复合材料的最低$ 25,000。核心最大化器美国专注于60/40复合材料是在2020年5月创建的,并于2020年5月31日成立。
在寻求可持续和高效的农业时,水培农业已成为一种开创性的解决方案,在有限的空间中提供了对植物生长参数的无与伦比的控制,并最大程度地提高了产量。本引言研究了水培农业的先进技术,探索旨在优化农作物生产,提高资源效率并彻底改变农业未来的尖端创新和策略。从精确的营养递送系统到最先进的自动化和基因工程,水培农业已经演变成科学,技术和可持续性的交集,成熟的学科[1]。
共轭梯度法。[24],明确计算和实现Jacobian∇x x tdθ(x t,t,t)∈Rn×n在高维度中是棘手的。此外,即使我们可以访问v [x | x t],天真地计算矩阵σy + a v [x |的倒数x t]a⊤在等式中。(19)仍然很棘手。幸运的是,我们观察到矩阵σy + a v [x | x t] a a是对称阳性定位(SPD),因此与共轭梯度(CG)方法兼容[71]。CG方法是一种迭代算法,用于求解MV = B的线性系统,其中SPD矩阵M和向量B是已知的。重要的是,CG方法仅需要通过执行矩阵向量乘积MV的操作员隐式访问M,给定Vector V。在我们的情况下,求解的线性系统是
OVHCloud US是Ovhcloud的子公司,Ovhcloud是全球参与者和欧洲领先的云提供商,在四大洲的43个数据中心内运营了40万台服务器。已有20多年了,该公司一直依靠一个集成模型,该模型可以完全控制其价值链,从其服务器的设计到其数据中心的构建和管理,包括其光纤网络的编排。这种独特的方法使其能够独立涵盖160万客户在140多个国家 /地区的所有用途。OVHCloud现在,将绩效,价格可预测性和对数据的总权结合起来,以支持其完全自由的增长。
摘要 — 端节点之间的高效信息路由是安全量子网络和量子密钥共享的关键推动因素,这依赖于随时间推移创建和维持纠缠态。然而,这种成对纠缠会由于通道损耗和网络节点上纠缠光子的存储而退化。纠缠态反过来会影响保真度,保真度是量化一对量子态相似程度的指标。在本文中,我们提出了一种路由解决方案,该解决方案可满足接收器对从多个发射器节点接收的量子信息施加的阈值保真度要求。我们的解决方案从网络内的此类节点池中选择中间中继器,以最大化量子信息传输的总速率。为此,我们首先提供相邻节点之间保真度损失以及端到端量子数据速率的表达式。然后,我们提出了一种新颖的两阶段路由解决方案,该解决方案(i)使用保真度作为成本度量来确定每个发射器的 k 条最短路径,以及(ii)(启发式地)根据中继器节点是否具有单个或多个可用内存单元为每个发射器分配一条路径。模拟结果表明,我们提出的基于保真度的路由解决方案满足广泛的保真度要求 [0.6-0.79],同时最大化量子信息传输速率,优于现有的基于距离和跳跃的路由方法。索引术语 — 量子网络、量子中继器、量子路由、量子通信、纠缠
本文重点研究短期梯级水力调度问题,特别是在竞争环境,即市场条件下。提出了一种非线性随机优化方法,将水力发电量作为每小时电力市场价格和水释放率的函数。为了解决基于土耳其梯级水力发电设施之一的案例研究,所提出的方法已成功应用于各种问题,计算时间可忽略不计,同时提供更高的利润。本文展示了应用基于拟牛顿法的模型可以实现的好处,该方法可以找到解决某种类型优化函数的零点或局部最大值和最小值,因为它可以更好地处理问题的不确定性、约束和复杂性。十年每小时水流入数据和电力市场价格被用作输入,并比较了级联和单一优化的结果。与每个水电站 (HPP) 的运行分别进行的比较研究表明,使用级联变体可获得 18% 的收入。
当我们为多个游戏平台使用流行的专有内容时,我们还积极地将其转变为电影,戏剧制作和其他非游戏媒体。此单一内容多次使用策略使我们能够享受多级盈利能力。此外,我们创建了一个周期,从而增加了每个IP的品牌力量,从而促进了新游戏的销售,这反过来又引起了用户对目录游戏的关注。