世界上最大的蝴蝶是微观的巴布亚新几内亚鸟鸟鸟。尽管有多年的保守努力来保护其栖息地并繁殖最大的28厘米蝴蝶,但该物种仍然存在着在IUCN红色列表中濒临灭绝的人,并且只有两个同种群中仅占据了总共约140公里的同种异体种群。在这里,我们旨在组装涉及该物种的涉及基因组,以研究其基因组多样性,历史人口统计学,并确定人口是否是结构化的,这可以为试图培育这两个种群的保护计划提供指导。使用长和短的DNA读取和RNA测序的组合,我们组装了tribe troidini的六个参考基因组,与O. alexandrae的四个带注释的基因组和两个相关物种的基因组和相关物种的基因组,鸟翅目priamus priamus and Troides and rorides and robones gromongomaculatus。我们估计了这三种物种的基因组多样性,并使用两种基于多态性的方法来考虑了低多形形态无脊椎动物的特征。的确,染色体尺度的组件显示,整个Troidini的核杂合性非常低,O. alexandrae(低于0.01%)似乎异常低。人口分析表明,在整个O. Alexandrae历史上,NE稳定下降,大约10,000年前的两个不同人群的分歧。这些结果表明O. alexandrae的分布已经很长时间了。它还应使本地保护计划意识到这两个人群的基因组差异,如果试图跨越两个人群,则不应忽略。
b" 物业的地址和法定描述 显示所有者和留置权人的所有权证明(如果有) 拟议用途的简要描述,包括以叙述形式表示的与第 7.131 节中规定的审查和评估标准相关的信息。PDF 副本通过电子邮件发送至 scollier@fbgtx.org 场地平面图应按比例绘制,并具有足够的尺寸以显示以下内容: 日期、比例、北角、标题、所有者姓名和编制场地平面图的人员姓名。 所有现有和拟议建筑物和土地改良的边界线、地役权和所需院子和后退距离的位置和尺寸。 场地上现有和拟议建筑物的位置、高度和预期用途,以及 50' 范围内毗连场地上建筑物的大致位置 现有和拟议改良的位置,包括停车和装卸区、行人和车辆通道以及公用设施或服务区。 现有和拟议围栏和屏障的位置。 第 7.940 节 拟议的外部照明,包括灯具类型。第十五条 - 室外照明 现有水道、排水设施和百年一遇洪泛区的中线。在受百年一遇洪泛区影响的场地,不透水覆盖和建筑覆盖以洪泛区外的区域为准。提供相应的计算。现有和拟建街道和小巷的位置和大小。现有和拟建停车和装卸空间的数量,以及适用的最低要求的计算。第 7.860 节分区摘要,包括类型、最小和实际地块面积、退让区、最大和实际建筑高度、建筑覆盖和不透水覆盖。坡度为 10% 或更大的场地,提供现有和拟建的地形和分级(5 英尺最小轮廓间隔)以及侵蚀控制措施。标志的位置。第 29 章需要屏蔽的固体废物容器的位置。第 7.980 节拟建和现有水、下水道和电力设施的位置。街道交叉口和车道上可见三角形的位置。消防通道景观美化,包括场地上现有树木的位置、大小和种类,所有拟建景观区域的面积,第 7.920 节适用费用注:弗雷德里克斯堡市可能需要更多信息来完成对拟建项目的审查。”
气候系统包括多种互动组件,例如大气,生物圈,水圈,冰冻圈和地质。这些成分在从几天,季节和数年到数千年到具有复杂反馈机制的多个时间尺度相互作用。尤其是,研究水文周期很重要,因为气候变化对水周期预算的影响很大,例如降水,土壤水分,表面和地下表面径流以及蒸散量(Bouraoui等人 2004; Imbach等。 2012;艾伦等。 2020)。 回报,水文循环通过将水蒸气转移到大气中影响气候系统。 关于土壤水分的,还可以通过将总降水作为输入,径流和总反应作为输出来检查水文周期(Peng等人。 2019; Pereira等。 2020)。 此外,水文循环与表面能平衡之间存在直接联系,并最终与表面气候之间存在直接联系,因为太阳辐射通过裸露的土壤和植被的蒸发从地球表面到大气的垂直转移到大气中(Siler等人。2004; Imbach等。2012;艾伦等。2020)。回报,水文循环通过将水蒸气转移到大气中影响气候系统。,还可以通过将总降水作为输入,径流和总反应作为输出来检查水文周期(Peng等人。2019; Pereira等。2020)。此外,水文循环与表面能平衡之间存在直接联系,并最终与表面气候之间存在直接联系,因为太阳辐射通过裸露的土壤和植被的蒸发从地球表面到大气的垂直转移到大气中(Siler等人。2018)。由于土地表面条件在区域表面气候建模时的重要性;几项研究讨论了各种土地表面模型版本之间的比较。在重现平均空气温度和总表面降水方面,社区土地模型3.5版(CLM3.5; Oleson等人(2017)。2008)优于生物圈 - 大气转移系统(BAT; Dickinson等人。1993)如Steiner等人报道。 (2009),Wang等。 (2015)和Maurya等。 此外,当涉及建模平均空气温度和总降水时,社区土地模型4.5版(CLM4.5; Oleson等人 2013)的表现比蝙蝠方案更好(Maurya等人 2017; Chung等。 2018)。 土壤水分在控制气候系统中起着重要作用,尤其是在半干旱和干旱地区,占全球40%的地区(Reynolds等人 2007)。 对控制土壤水分变异性的因素至关重要(Srivastava等人。 2021a)。 此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。 2010; Lemoine&Budny 2022)。 的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。 例如,Lei等人。 (2014)使用了社区土地模型1993)如Steiner等人报道。(2009),Wang等。 (2015)和Maurya等。 此外,当涉及建模平均空气温度和总降水时,社区土地模型4.5版(CLM4.5; Oleson等人 2013)的表现比蝙蝠方案更好(Maurya等人 2017; Chung等。 2018)。 土壤水分在控制气候系统中起着重要作用,尤其是在半干旱和干旱地区,占全球40%的地区(Reynolds等人 2007)。 对控制土壤水分变异性的因素至关重要(Srivastava等人。 2021a)。 此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。 2010; Lemoine&Budny 2022)。 的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。 例如,Lei等人。 (2014)使用了社区土地模型(2009),Wang等。(2015)和Maurya等。此外,当涉及建模平均空气温度和总降水时,社区土地模型4.5版(CLM4.5; Oleson等人2013)的表现比蝙蝠方案更好(Maurya等人2017; Chung等。2018)。土壤水分在控制气候系统中起着重要作用,尤其是在半干旱和干旱地区,占全球40%的地区(Reynolds等人2007)。 对控制土壤水分变异性的因素至关重要(Srivastava等人。 2021a)。 此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。 2010; Lemoine&Budny 2022)。 的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。 例如,Lei等人。 (2014)使用了社区土地模型2007)。对控制土壤水分变异性的因素至关重要(Srivastava等人。2021a)。此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。2010; Lemoine&Budny 2022)。的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。例如,Lei等人。(2014)使用了社区土地模型