随着全球糖尿病患病率的上升,胰岛素治疗和口服降糖药等传统治疗方法往往无法达到最佳血糖控制,从而导致严重的并发症。最近的研究集中于通过 a 细胞的转分化来补充胰腺 b 细胞,这提供了一种有希望的治疗途径。本综述探讨了 a 细胞到 b 细胞转分化的分子机制,强调了关键转录因子,例如 Dnmt1、Arx、Pdx1、MafA 和 Nkx6.1,并讨论了潜在的临床应用,特别是在以严重 b 细胞功能障碍为特征的 1 型和 2 型糖尿病中。其中还包括转分化效率低、细胞稳定性和安全性问题等挑战。未来的研究方向包括优化分子途径、提高转分化效率和确保 b 细胞身份的长期稳定性。总体而言,将 a 细胞转化为 b 细胞的能力代表了糖尿病治疗的一种变革性策略,为严重 b 细胞丢失的患者提供了更有效和可持续的治疗希望。
来源:Rare:英国 16 岁以上的咨询成年人(N=3,519)数据收集于 2022 年 9 月 16 日至 11 月 1 日。问题 17 - 您是否考虑在未来 12 个月内进行以下任何医学美容治疗?正在考虑任何医学美容治疗的人(N=710)。
本欧洲标准于 2021 年 4 月 12 日获得 CEN 批准。CEN 成员必须遵守 CEN/CENELEC 内部规定,该规定规定了授予本欧洲标准国家标准地位的条件,不得有任何修改。有关此类国家标准的最新清单和参考文献可向 CEN-CENELEC 管理中心或任何 CEN 成员申请获得。本欧洲标准有三个官方版本(英语、法语、德语)。由 CEN 成员负责翻译成其本国语言并通知 CEN-CENELEC 管理中心的任何其他语言版本与官方版本具有同等地位。 CEN 成员包括奥地利、比利时、保加利亚、克罗地亚、塞浦路斯、捷克共和国、丹麦、爱沙尼亚、芬兰、法国、德国、希腊、匈牙利、冰岛、爱尔兰、意大利、拉脱维亚、立陶宛、卢森堡、马耳他、荷兰、挪威、波兰、葡萄牙、北马其顿共和国、罗马尼亚、塞尔维亚、斯洛伐克、斯洛文尼亚、西班牙、瑞典、瑞士、土耳其和英国的国家标准机构。
植物雄性不育 (MS) 是指植物无法产生功能性花药、花粉或雄配子。开发 MS 系是植物育种计划中最重要的挑战之一,因为建立 MS 系是 F1 杂交生产的主要目标。出于这些原因,已在几种具有经济价值的物种中开发了 MS 系,特别是在园艺作物和观赏植物中。多年来,MS 已通过许多不同的技术实现,从基于交叉介导的传统育种方法的方法到基于遗传学和基因组学知识的先进设备,再到基于基因组编辑 (GE) 的最先进分子技术。GE 方法,特别是由 CRISPR/Cas 相关工具介导的基因敲除,已经产生了灵活而成功的战略思想,用于改变关键基因的功能,调节包括 MS 在内的许多生物过程。这些精准育种技术耗时较少,可通过积累有利等位基因加速新遗传变异的产生,能够显著改变生物过程,从而提高品种开发绕过有性杂交的潜在效率。本文的主要目的是概述植物雄性不育方面的见解和进展,重点介绍最近通过靶向特定核基因座诱导 MS 的新型育种 GE 应用。本文总结了近期 CRISPR 技术的潜在机制和主要作物和观赏植物的相对成功应用。本文将讨论 CRISPR/Cas 系统在 MS 突变体生产中的未来挑战和新潜在应用以及其他潜在机会,例如通过瞬时转化系统生成 CRISPR 编辑的无 DNA 和跨代基因编辑以引入所需等位基因和精准育种策略。
本欧洲标准于 2022 年 2 月 14 日获得 CEN 批准。CEN 成员必须遵守 CEN/CENELEC 内部规定,该规定规定了授予本欧洲标准国家标准地位的条件,不得有任何更改。有关此类国家标准的最新清单和参考文献可向 CEN-CENELEC 管理中心或任何 CEN 成员申请获得。本欧洲标准有三个官方版本(英语、法语、德语)。由 CEN 成员负责翻译成其本国语言并通知 CEN-CENELEC 管理中心的任何其他语言版本与官方版本具有同等地位。 CEN 成员包括奥地利、比利时、保加利亚、克罗地亚、塞浦路斯、捷克共和国、丹麦、爱沙尼亚、芬兰、法国、德国、希腊、匈牙利、冰岛、爱尔兰、意大利、拉脱维亚、立陶宛、卢森堡、马耳他、荷兰、挪威、波兰、葡萄牙、北马其顿共和国、罗马尼亚、塞尔维亚、斯洛伐克、斯洛文尼亚、西班牙、瑞典、瑞士、土耳其和英国的国家标准机构。
本欧洲标准于 2021 年 7 月 25 日获得 CEN 批准。CEN 成员必须遵守 CEN/CENELEC 内部规定,该规定规定了授予本欧洲标准国家标准地位的条件,不得有任何修改。有关此类国家标准的最新清单和参考文献可向 CEN-CENELEC 管理中心或任何 CEN 成员申请获得。本欧洲标准有三个官方版本(英语、法语、德语)。由 CEN 成员负责翻译成其本国语言并通知 CEN-CENELEC 管理中心的任何其他语言版本与官方版本具有同等地位。 CEN 成员包括奥地利、比利时、保加利亚、克罗地亚、塞浦路斯、捷克共和国、丹麦、爱沙尼亚、芬兰、法国、德国、希腊、匈牙利、冰岛、爱尔兰、意大利、拉脱维亚、立陶宛、卢森堡、马耳他、荷兰、挪威、波兰、葡萄牙、北马其顿共和国、罗马尼亚、塞尔维亚、斯洛伐克、斯洛文尼亚、西班牙、瑞典、瑞士、土耳其和英国的国家标准机构。
各种利益集团,包括旅游协会、政策制定者以及欧盟 2 或经合组织 3 等国际组织,都迫切需要有关德国旅游业的可靠和相关数据。这类数据对于解决关键问题和做出明智决策至关重要。因此,评估旅游业在德国的经济意义以及分析其结构和环境影响极其重要。德国联邦统计局实施的旅游经济和环境卫星账户(TSA-EE)侧重于国内事件(地域概念),在方法上融入国家和环境经济账户。这既可以联合量化旅游业的经济、环境经济和劳动力市场意义,也可以直接与宏观经济层面的参考数据进行比较。
提示:嘿,我希望您像Elon Musk一样回答,使用Elon Musk的所有知识以及有关Elon Musk的想法的所有可用信息。我的挑战是开发一种产品,该产品使用数以百万计的人使用的AI技术,并且前期投资很少。现在为我提供了一个详细的500-1000个单词答案,并带有三个动作点。
蛋白质发现扩展到基因编辑和治疗应用 加州南旧金山(2020 年 1 月 30 日)Mammoth Biosciences 是世界上第一个基于 CRISPR 的疾病检测平台背后的公司,今天宣布其 B 轮融资获得 4500 万美元超额认购。此次融资由德诚资本领投,Mayfield、NFX、Verily 和 Brook Byers 参投,使公司的融资总额超过 7000 万美元。这笔资金将推动该公司进一步开发 CRISPR 诊断和下一代 CRISPR 产品,同时该公司将其平台扩展到包括基因编辑和下一代治疗方法。Mammoth 还在探索与生物技术和制药公司的深度合作,以利用 Mammoth CRISPR 平台改变医疗保健并造福患者。CRISPR 在治疗疾病方面具有巨大的前景,Cas9 的临床试验已经在进行中——这是将 CRISPR 从实验室带入日常生活的关键一步。但是,尽管这种酶在体外环境中显示出成功的初步迹象,但在体内应用方面仍然存在挑战,限制了 Cas9 在广泛疾病领域的广泛应用。此外,Cas9 不能用于基于 CRISPR 的诊断,这是 Cas 系统的一个新兴和突破性应用。Mammoth 凭借其广泛的新型 Cas 系统组合,在克服这些障碍方面具有独特的优势,这些系统可作为诊断、基因编辑和治疗应用的工具箱。4500 万美元的 B 轮融资将推动 CRISPR 平台的开发,特别关注 Mammoth 发现的 Cas14。Cas14 是一种独特的酶,由于其极小的尺寸、多样化的靶向能力和高保真度,开辟了新的可能性。这些特性将使 Mammoth 能够实现下一代编辑,在体外和体内应用中具有更广泛的靶标范围,并为实现先进的 CRISPR 模式(如靶向基因调控、精确编辑等)奠定基础。最近,包括 Casebia(拜耳与 CRISPR Therapeutics 的合资企业)前联合创始人 Peter Nell 和 Synthego 和 Bio-Rad 前高管 Ted Tisch 在内的业内资深人士分别以首席商务官和首席运营官的身份加入了该公司,以加速公司的发展。Grail 联合创始人、前 Illumina 董事会成员 Jeff Huber 已加入公司董事会担任独立董事,斯坦福大学医学院院长 Lloyd Minor 已加入 Mammoth 顾问委员会。Mammoth Biosciences 首席执行官兼联合创始人 Trevor Martin 解释说:“作为 CRISPR 发现前沿的团队,我们亲眼目睹了对新工具的需求,以实现这项技术所提供的治疗和诊断前景。通过为诊断以外的新产品提供支持,我们正在使
使用海洋环境DNA(EDNA)方法进行的越来越多的研究通过帮助和简化评估被剥削的人群和生态系统状况所需的一些劳动密集型传统调查,显示了其在海洋渔业管理中的潜在应用。Edna接近(即 metabarcoding and Targeed)可以通过提供有关物种组成的信息来支持基于生态系统的薄片管理;侵入性,稀有和/或濒危物种的监视;并提供物种丰度的估计。 由于这些潜在用途和保护科学的潜在用途,在过去几年中,在海洋栖息地中应用EDNA方法的研究数量有所扩大。 但是,在应用管道进行数据分析时,整个研究缺乏一致性,这使得结果很难比较它们。 这种缺乏一致性的部分原因是在原始序列数据的管理中知识不足以及允许比较结果的分析方法引起的。 因此,我们在这里审查EDNA数据处理和分析的基本步骤,以获得声音,可重现和可比的结果,从而提供了一组对每个步骤有用的生物信息学工具。 总的来说,本评论介绍了EDNA数据分析的艺术状态,以促进可持续性的盗版管理中的全面应用。Edna接近(即metabarcoding and Targeed)可以通过提供有关物种组成的信息来支持基于生态系统的薄片管理;侵入性,稀有和/或濒危物种的监视;并提供物种丰度的估计。由于这些潜在用途和保护科学的潜在用途,在过去几年中,在海洋栖息地中应用EDNA方法的研究数量有所扩大。但是,在应用管道进行数据分析时,整个研究缺乏一致性,这使得结果很难比较它们。这种缺乏一致性的部分原因是在原始序列数据的管理中知识不足以及允许比较结果的分析方法引起的。因此,我们在这里审查EDNA数据处理和分析的基本步骤,以获得声音,可重现和可比的结果,从而提供了一组对每个步骤有用的生物信息学工具。总的来说,本评论介绍了EDNA数据分析的艺术状态,以促进可持续性的盗版管理中的全面应用。
