像素转换在图像处理中至关重要,很大程度上取决于插值方法来确保平滑度和清晰度。这项工作重点关注两种广泛使用的图像插值技术:最近邻插值和双线性插值,这两种技术都是使用集成软件代码实现的。我们的方法使每种插值技术都可以独立应用,从而可以直接比较它们的性能。为了对每种插值方法进行全面评估,我们使用了一组基本质量评估指标:峰值信噪比 (PSNR)、结构相似性指数 (SSIM)、灰度分析和均方误差 (MSE)。选择这些指标是为了对图像清晰度、结构准确性和整体视觉质量进行平衡评估。本研究的结果对每种插值技术的优势和局限性进行了详细分析。这些发现旨在帮助研究人员和从业者根据他们在图像处理领域的特定要求选择最合适的插值方法。通过提供比较框架,这项工作通过增强评估和优化数字成像应用中的图像质量的方法来为该领域做出贡献。
糖尿病是一种慢性代谢性疾病,其特征是血糖升高,可导致眼睛和重要器官受损。2 型糖尿病是糖尿病的一种变体,最常影响 18 岁以上的成年人,这种变体引起的症状并不明显,识别它需要很长的测试过程。使用分类算法预测糖尿病,有助于在疾病早期阶段将风险降至最低,并帮助健康从业者控制糖尿病的影响。在本研究中,作者在 Pima Indian Diabetes 数据集上比较了决策树和 K-Nearest Neighbor 算法在预测糖尿病方面的表现。两种算法模型均使用 3 个数据集共享比率进行训练,分别为 80:20、70:30 和 65:35。此外,作者还实施了 GridSearchCV 超参数调整,以找到两种模型的最佳参数。两种模型的准确率、精确度、召回率和 F-1 分数用于确定哪种模型具有最佳性能。结果表明,未进行超参数调优的决策树算法在 70:40 的比例下效果最佳,准确率为 83.33%;KNN 算法中 K=7 为最优 K 值,准确率为 77.65%;进行超参数调优的 GridSearchCV 在 80:20 和 65:35 的比例下效果最佳,能够找到决策算法中的最佳参数。但决策树算法仍然存在过拟合的问题。
摘要:中风是一种危及生命的严重疾病,需要尽早发现和干预以减轻其影响。该项目使用 K-最近邻 (KNN) 算法提出了一种中风预测模型,KNN 算法是一种流行的机器学习技术,以其在分类任务中的简单性和有效性而闻名。在 KNN 算法中,数据集被分为两类。第一类是中风风险高,第二类是中风风险低。该项目的目标是开发一个可靠且准确的预测系统,帮助医疗保健专业人员识别有中风风险的个体。该项目使用的数据集包括不同群体的各种人口统计、临床和生活方式特征,包括年龄、性别、高血压状况、婚姻状况、心脏病史、工作类型、吸烟习惯等。项目研究结果表明,基于 KNN 的中风预测模型在准确性、敏感性和特异性方面取得了令人鼓舞的结果。这表明 KNN 可以成为识别可能有中风风险的个体的有力工具,从而可以采取早期干预和预防措施。关键词:中风、k-近邻、逻辑回归、随机森林、机器学习算法
药物-靶标结合亲和力 (DTA) 预测对于药物发现至关重要。尽管将深度学习方法应用于 DTA 预测,但所获得的准确度仍然不理想。在这项工作中,受到最近检索方法成功的启发,我们提出了 𝑘 NN-DTA,这是一种基于非参数嵌入的检索方法,采用预先训练的 DTA 预测模型,它可以扩展 DTA 模型的功能,而无需或几乎不需要任何成本。与现有方法不同,我们从嵌入空间和标签空间引入了两种邻居聚合方法,并将它们集成到一个统一的框架中。具体而言,我们提出了一种具有成对检索的标签聚合和一种具有逐点检索最近邻居的表示聚合。该方法在推理阶段执行,并且可以在无需训练成本的情况下有效提高 DTA 预测性能。此外,我们提出了一个扩展,Ada-𝑘 NN-DTA,一种具有轻量级学习的实例化和自适应聚合。在四个基准数据集上的结果
3. 使用 K 最近邻 (KNN) 方法进行分析 K 最近邻 (KNN) 是一种通过考虑现有属性和训练样本来对新对象进行分类的算法。分类不需要使用模型,而仅基于记忆。在该算法中,将在查询点中搜索若干个𝐾个最近的训练点,并根据这些𝐾点中的大多数进行分类。 KNN 采用基于邻域的分类方法,通过计算查询实例到训练样本的最短距离来确定 KNN。 KNN算法对于预测新物体的分类非常简单而且有效。使用KNN方法的步骤如下:
摘要 我们提出了 CXL-ANNS,这是一种软硬件协作方法,可实现高度可扩展的近似最近邻搜索 (ANNS) 服务。为此,我们首先通过计算快速链路 (CXL) 将 DRAM 从主机中分离出来,并将所有必要的数据集放入其内存池中。虽然这个 CXL 内存池可以使 ANNS 能够在不损失准确性的情况下处理十亿点图,但我们观察到由于 CXL 的远内存类特性,搜索性能会显著下降。为了解决这个问题,CXL-ANNS 考虑节点级关系并将预计访问最频繁的邻居缓存在本地内存中。对于未缓存的节点,CXL-ANNS 通过了解 ANNS 的图遍历行为预取一组最有可能很快访问的节点。CXL-ANNS 还了解 CXL 互连网络的架构,并让其中的不同硬件组件并行协作搜索最近邻居。为了进一步提高性能,它放宽了邻居搜索任务的执行依赖性,并通过充分利用 CXL 网络中的所有硬件来最大化搜索并行度。我们的实证评估结果表明,与我们测试的最先进的 ANNS 平台相比,CXL-ANNS 的 QPS 提高了 111.1 倍,查询延迟降低了 93.3%。在延迟和吞吐量方面,CXL-ANNS 也分别比仅具有 DRAM(具有无限存储容量)的 Oracle ANNS 系统高出 68.0% 和 3.8 倍。
本研究探讨了 K-最近邻 (KNN) 算法在水果分类和质量评估中的应用,旨在通过机器学习改进农业实践。该研究采用了一个全面的数据集,涵盖了水果的各种属性,例如大小、重量、甜度、脆度、多汁度、成熟度、酸度和质量,并利用 5 倍交叉验证方法来确保 KNN 模型性能的可靠性和通用性。研究结果表明,KNN 算法在所有指标上都表现出较高的准确度、精确度、召回率和 F1 分数,表明该算法在对水果进行分类和准确预测其质量方面非常有效。这些结果不仅验证了该算法在农业应用中的潜力,而且与现有关于机器学习解决复杂分类问题的能力的研究相一致。该研究的讨论延伸到在农业领域实施基于 KNN 的模型的实际意义,强调了彻底改变质量控制和库存管理流程的可能性。此外,该研究通过证实有关 KNN 在农业环境中有效性的假设,为该领域做出了贡献,并为未来的探索奠定了基础,这些探索可以整合多种机器学习技术以增强结果。后续研究的建议包括扩展数据集和探索算法协同作用,旨在进一步推动农业技术和机器学习应用的发展。
第 1 章 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................. 16 1.1.4 李群 .................................................................................................................................................................................................. 18 1.2 跟踪算法 .................................................................................................................................................................................. 19 1.2.1 最近邻滤波器 .................................................................................................................................................................. 19 1.2.1 最近邻滤波器 .................................................................................................................................................................. 19 . . . 19 1.2.2 全局最近邻滤波器. . . . . . . . . . . 19 1.2.3 概率数据关联滤波器. . . . . . . . . . . 20 1.2.4 联合概率数据关联滤波器. . . . . . . . . . 20 1.2.5 多重假设跟踪. . . . . . . . . . . . 21 1.2.6 概率多假设跟踪器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
获得了 Yola North 地方政府区域内所有初中以上学校的全球定位系统观测坐标。这些坐标用于创建数字地图,显示研究区域内初中以上学校的位置。这些坐标用于确定特定单位面积内一个点到其最近邻点的距离。使用以 MATLAB 2009a 编程语言编写的计算机程序计算距离。然后使用获得的距离,使用最近邻分析统计工具确定这些学校的分布模式,其中计算了最近邻指数 (R n ) 的值,发现 R n =1.1124。获得的结果表明研究区域存在随机分布模式。然后使用 Z 分布计算 R n 值的显著性检验,从获得的 Z 值可以看出,R n 值显著。使用学校的属性创建了一个数据库,并从创建的地理空间数据库中生成了不同的查询,如图 4.3 - 4.8 所示。分析表明,最近邻分析可以很好地用于确定初中以上学校和其他设施的空间分布模式,以实现有意义的发展。该研究清楚地描述了使用最近邻分析确定初中以上学校的空间分布模式的过程。该研究揭示了学校在数字地图上的位置,R n 的值表明研究区域内存在随机分布模式。单位面积 (A) 所用的比例尺显示两所学校之间没有任何邻居。建议使用最近邻分析来确定学校的空间分布模式,因为它可以清楚地显示这些学校的分布情况。应鼓励使用编程语言(尤其是 MATLAB)编写计算机程序来计算与坐标之间的距离。关键词:制图、全球定位系统、MATLAB、GIS。
摘要 我们获得了 Yola North 地方政府区域内所有初中以上的全球定位系统坐标,这些坐标用于创建显示研究区域内初中以上学校位置的数字地图。这些坐标用于确定特定单位区域内一个点到其最近邻点的距离。这些距离是使用 MATLAB 2009a 编程语言编写的计算机程序计算的。然后使用获得的距离确定这些学校的分布模式,使用最近邻分析统计工具,计算出最近邻指数 (R n ) 的值,结果为 R n =1.1124。得到的结果表明研究区域内存在随机分布模式。然后使用 Z 分布对 R n 值进行显著性检验,从获得的 Z 值可以看出,R n 值显著。使用学校的属性创建了一个数据库,并从创建的地理空间数据库中生成了不同的查询,如图 4.3 - 4.8 所示。分析表明,最近邻分析可以很好地用于确定初中以上学校和其他设施的空间分布模式,以实现有意义的发展。这项研究清楚地描述了使用最近邻分析确定初中以上学校空间分布模式的过程。这项研究揭示了学校在数字地图上的位置,R n 的值表明研究区域内存在随机分布模式。单位面积 (A) 使用的比例尺显示两所没有任何邻居的学校。建议使用最近邻分析来确定学校的空间分布模式,因为它清楚地显示了这些学校的分布情况。应该鼓励使用编程语言(尤其是 MATLAB)编写计算机程序来计算与坐标的距离。关键词:制图、全球定位系统、MATLAB、GIS。