5.3.1.1 边界八边形和框架。........................................................................... 9 5.3.1.2 边界八边形和图标/修饰符 ........................................................................ 11 5.3.2 框架 ........................................................................................................... 11 5.3.2.1 标准标识。.................................................................................................. 15 5.3.2.2 域 .................................................................................................................. 15 5.3.2.3 状态。.................................................................................................... 15 5.3.3 填充 ............................................................................................................. 16 5.3.4 图标 ............................................................................................................. 18 5.3.4.1 主图标。................................................................................................................ 18 5.3.4.2 全八边形图标。........................................................................................................ 18 5.3.4.3 全框架图标。.................................................................................................... 18 5.3.5 修饰符。............................................................................................................. 19 5.3.6 放大器 ............................................................................................................. 19 5.3.6.1 梯队指示器 ............................................................................................. 23 5.3.6.2 安装指示器。............................................................................................. 24 5.3.6.3 特遣队指示器。................................................................................................ 24 5.3.6.4 假动作/假指标 .............................................................................................. 24 5.3.6.5 偏移位置放大器 .............................................................................................. 24 5.3.6.6 高度/深度修正器。........................................................................... 27 5.3.6.11 文本修改器。................................................................................................ 25 5.3.6.6.1 高度基准点 .............................................................................................. 25 5.3.6.6.2 相对高度 .............................................................................................................. 25 5.3.6.6.3 飞行高度层 .............................................................................................................. 25 5.3.6.6.4 高度/深度修正器的多个实例 ............................................................................. 25 5.3.6.7 日期时间组。.................................................................................................... 26 5.3.6.8 运动方向放大器 ............................................................................................. 26 5.3.6.9 移动指示器 ............................................................................................. 26 5.3.6.10 辅助设备指示器。.................................................................................................... 28 5.3.6.12 动态图形放大器 .......................................................................................... 28 5.3.6.12.1 不确定面积放大器。...................................................................................... 30 5.3.6.12.1.1 椭圆AOU放大器 ...................................................................................... 30 5.3.6.12.1.2 轴承箱AOU放大器 ................................................................................ 30 5.3.6.12.1.3 轴承线AOU放大器。.................................................................... 30 5.3.6.12.2 航位推算拖车放大器 .............................................................................. 30 5.3.6.12.2.1 线路 DR 拖车放大器 .............................................................................. 30 5.3.6.12.2.2 最远圆 DR 拖车放大器 ...................................................................... 30 5.3.6.12.3 速度领先放大器 ...................................................................................... 30 5.3.6.12.4 配对线路放大器 ...................................................................................... 31
如果是,请先从规划部门获得树木移除许可证。在提交 ADU 建筑许可证之前,必须先获得树木移除许可证的批准。E. 该项目是否涉及任何受保护树木滴水线内侧 2/3 内的施工活动?如果是,请提交一份树艺师报告,详细说明施工期间为保护受保护树木而采取的树木保护措施,该报告应纳入现场规划,且不能要求修改市政府预先批准的规划。F. ADU 结构距离最近的通道是否超过 200 英尺(以消防水带沿地面行进路径测量)?如果是,该项目可能需要接受消防部门的额外审查和要求。G. ADU 结构距离最近的消防栓是否超过 600 英尺(以消防水带沿地面行进路径测量)?如果是,该项目可能需要接受消防部门的额外审查和要求。 H. 距离拟建 ADU 最远外角 600 英尺范围内的消防栓是否能够提供所需的 500 gpm 消防流量和 20 psi 残余压力?如果不是,则该项目可能需要接受消防部门的额外审查和要求。请联系 Cal Water 获取消防流量信息。I. 由于缺乏与城市下水道的最小卫生下水道坡度,该项目是否需要卫生下水道集水坑和喷射泵?如果是,则需要延期提交。
空间探索的新时代的特点是一系列巨大的里程碑,这些里程碑扩大了人类成就的界限。SpaceX,Blue Origin和Virgin Galactic等私人公司在重新定义太空旅行的可能性方面发挥了关键作用。这些实体已经开创了可重复使用的火箭技术,大大降低了将有效载荷和人类推向太空的成本。SpaceX的Falcon 9火箭可以发射和登陆多次,从而使空间更具成本效益和可持续性。此外,国际空间站(ISS)证明了国际合作,代表了在低地球上建立可居住的哨所的全球努力。国际空间站不仅是科学研究的平台,而且还可以作为未来深空任务的垫脚石,从而促进了使地球生命受益的技术进步。火星已成为这个新时代的焦点。各种太空机构和私人公司正在努力工作,将船员的错误派往红色星球。NASA的毅力漫游者成功地降落在火星上,不仅在进行科学探索,而且还在测试未来人类任务的技术,例如从火星大气中产生氧气。埃隆·马斯克(Elon Musk)的SpaceX制定了一个大胆的计划,在火星上建立一个自我维持的殖民地,设想了人类成为多层次物种的未来。空间探索的新时代不仅限于我们的太阳系;它延伸到宇宙的最远。Starship是目前正在开发的完全可重复使用的航天器,旨在将大量乘客和货物运送到地球以外的目的地,彻底改变了行星际旅行。望远镜这样的望远镜望远镜为我们提供了遥远星系和星云的令人叹为观止的图像,扩大了我们的理解
摘要 我们计划使用 NIRSpec 积分场单元 (IFU) 拍摄真正的太阳系气态巨行星类似物、标志性的 eps Eridani b 的第一张图像和光谱。Eps Eri b 是一颗已知的径向速度行星,围绕附近的类太阳恒星 (K2V) 运行,轨道距离约为 3.5 au(周期为 7.3 年),其动态质量介于土星和木星之间(0.57-0.78 MJup),这意味着它可以直接与太阳系气态巨行星进行比较。这颗青少年(4 亿至 8 亿年)亚木星是独一无二的,因为就半长轴、质量和年龄而言,它位于凌日和直接成像的系外行星之间。到目前为止,该参数空间区域无法进行光谱表征。此外,第 3 周期是观察该行星的最佳时间,因为它处于最远的投影分离状态,这种情况每 4 年才发生一次。我们将针对这颗冷亚木星的峰值通量(~140-215 K)获得 3-5 微米的 R~2,700 光谱,并首次测量其亮度、有效温度和成分(C/H、O/H、N/S)。由于第 1 周期数据证明 NIRSpec IFU 可以达到优于 JWST 日冕仪的对比度(35 分钟内 1'' 处 1e-6),因此可以直接探测到 eps Eri b。观察描述我们建议使用 NIRSpec 积分场单元(IFU;G395H/F290LP;2.87 - 5.27 微米)拍摄 eps Eridani b 的第一张图像和高分辨率光谱(R=2,700)。
摘要 电动动力系统具有与带有内燃机的传统动力系统不同的特性,并且需要非常规的飞机设计才能充分发挥其潜力。因此,本文介绍了一种识别带有电动动力系统的潜在飞机设计的方法。LuFo 项目 GNOSIS 的项目合作伙伴收集了动力系统架构、气动相互作用、机载系统和操作策略等领域的有前景的技术选项。从全球排放(CO 2 )、局部排放(NO X 和噪音)和运营成本方面评估了技术选项对通勤飞机的影响。评估考虑了 2025 年和 2050 年投入使用,并以参考飞机 Beechcraft 1900D 为基础。文献综述和简化计算使得能够对气动相互作用、系统和操作策略进行评估。初步的飞机设计工具通过引入“动力混合”和“动力分配”两个参数来评估不同的动力系统架构。随后,将兼容的技术选项汇编成技术篮,并使用与理想解的最短欧几里得距离和与最差解的最远欧几里得距离进行排序(按与理想解的相似性排序技术 (TOPSIS) 方法)。对 CS 23 法规的分析导致了高翼设计,并排除了在飞机尾部带有燃气涡轮的部分涡轮电动动力系统架构。对于 2025 年,选择了带有两个额外电动翼尖螺旋桨的部分涡轮电动动力系统。到 2050 年,串行混合动力系统使用燃气涡轮或燃料电池与电池组合,为机翼前缘的分布式电动推进器提供动力。在这两种情况下,飞机设计都包括电动环境控制系统、电动起落架和用于主飞行控制和起落架的电液执行器。
抽象QFN软件包已成为移动应用程序的主流设计。随着越来越多的应用程序采用QFN样式软件包,I/O计数要求正在增加。在QFN包装中增加PIN数的典型方法是增加体型以适应其他铅手指。这是不可取的,因为移动设备用户正在推动较小的包装尺寸。通过使用双行设计,可以在相同的整体体型中添加更多的铅手指。这增加了整体性能与包装尺寸比率。先前在双行QFN软件包上发表的研究主要关注制造的设计注意事项。[1-3]由于当前设计使用标准的铅框架处理技术,因此与单行QFN生产相比,不需要其他处理策略。这项研究重点介绍了28条双排QFN软件包的板级焊接联合可靠性。在制造之前,对各种双行QFN足迹进行了机械建模DOE,以通过温度周期测试估算焊料关节寿命。建模之后是雏菊链单元的原型制造。根据JEDEC规格对雏菊链设备进行温度周期测试。进行测试,直到获得完整的寿命估计曲线为止。与单排设计相似的单行设计相比,双行设计实际上可以改善焊料关节可靠性性能。由于包装的直接弯道上没有铅指的双手,这通常是测试过程中包装中最高的应力区域,因此可以增加整体焊料关节寿命。虽然双行包装上的典型失败的铅手指仍然是距包装中心最远的距离,但这些铅手指并不位于包装角中。最终结果表明,双行QFN软件包通过温度周期测试具有良好的性能,并且性能比标准单行QFN软件包的性能提高。
备忘录 2024 年 10 月 17 日 致:投资受托人委员会和董事会 来自:Eli Martinez,执行董事 Kevin Killeavy,首席投资官 主题:环境、社会、治理 — 必需的年度更新 — 2024 年 如董事会治理手册中所述,董事会必须每年提供一份综合报告,描述董事会 ESG 政策的实施情况和结果,包括对该政策的更新或修订建议,作为年终报告流程的一部分。该报告包括以下内容:I. 行业发展 II. 现任经理 ESG 更新和企业参与 III. 顾问计划 IV. 员工/董事会行动和研究 I. 行业发展 新罕布什尔州击败反 ESG 立法——新罕布什尔州雇员退休系统一致投票反对试图禁止在投资决策中考虑 ESG 因素的拟议立法。董事会反对该立法,认为禁止纳入 ESG 考虑因素将妨碍其履行受托责任的能力。 常春藤联盟捐赠基金面临要求撤资以色列的呼声——几家常春藤联盟捐赠基金正面临着要求其捐赠基金撤资任何被视为与以色列有业务往来的公司的压力。虽然许多常春藤联盟捐赠基金都面临审查,但布朗大学的捐赠基金是这一过程中走得最远的,因为一个由学生、教师和校友组成的委员会正在提出一项法案,供董事会投票,该法案将迫使该基金撤资“参与巴勒斯坦侵犯人权行为的公司”。 德克萨斯州因反 ESG 法案面临诉讼——美国可持续商业委员会正在起诉德克萨斯州,称 2021 年州法律限制州养老基金投资纳入 ESG 因素的基金是违宪的。自该法律通过以来,几家德克萨斯州养老基金
最近的大型语言模型 (LLM),例如 ChatGPT,在提供特定指令时已经能够生成类似人类的流畅响应。在承认技术进步带来的便利的同时,教育工作者也担心学生可能会利用 LLM 完成写作作业并将其冒充为原创作品。尽管许多 AI 内容检测研究都是由于这种担忧而开展的,但大多数先前研究将 AI 内容检测建模为分类问题,假设文本要么完全由人类编写,要么完全由 AI 生成。在这项研究中,我们在一个很少探索但现实的环境中调查了 AI 内容检测,其中要检测的文本由人类和生成性 LLM 协作编写(为简单起见称为混合文本)。我们首先将检测任务形式化为从给定的混合文本中识别人类编写的内容和 AI 生成的内容之间的过渡点(边界检测)。我们通过从学生写的原始文章中随机删除部分句子,然后指示 ChatGPT 填写不完整的文章,构建了一个混合文章数据集。然后我们提出了一种两步检测方法,其中(1)在编码器训练过程中将 AI 生成的内容与人类编写的内容分开;(2)计算每两个相邻原型之间的距离(原型是嵌入空间中混合文本中一组连续句子的平均值),并假设两个相邻原型之间存在边界,这些原型彼此距离最远。通过大量实验,我们观察到以下主要发现:(1)所提出的方法在不同的实验设置中始终优于基线方法;(2)编码器训练过程(即上述两步方法的第一步)可以显着提高所提出方法的性能; (3)在检测单边界混合型文章的边界时,通过采用相对较大的原型大小(即计算原型所需的句子数量),可以增强所提出的方法,从而使域内评估的结果提高了 22%(相对于最佳基线方法),域外评估的结果提高了 18%。
兰贝斯租赁战略和经济适用房声明 2020 介绍/前言 兰贝斯是一个特殊的地方。它多元化、充满活力、充满激情和机遇,吸引了来自英国、欧洲和世界其他地方的人们,他们都想在这里安家。这是值得庆祝的,但我们自治市的吸引力确实意味着,住房的竞争非常激烈,在私人市场上购买或租赁价格昂贵。我们很清楚,随着自治市的发展,我们希望投资于我们的社区,增强其复原力,并共享这种增长的好处。由道德房东提供的安全稳定的新经济适用房是我们支持更具复原力的社区的基本组成部分。理事会是最大的单一房东,但为所有有需要的居民提供高度环保、可持续的优质经济适用房是一项共同的努力。我们设立了兰贝斯之家,以扩大理事会提供新经济适用房的范围,但我们的目标中很大一部分将来自住房协会和其他开发商。本文件就自治市镇为居民提供一系列经济适用房选择的方法提供了立场声明,以实施兰贝斯的可持续增长和包容性机会战略。兰贝斯的首要任务是为那些最远离市场的人提供经济适用房,但我们也需要为那些被迫离开自治市镇寻找经济适用家庭住房和可购买房屋的人提供住房选择。本文件还涵盖了我们根据《2011 年地方主义法案》制定租赁战略的义务,该战略列出了自治市镇所有经济适用房提供者在制定自己的租赁政策时应考虑的广泛目标。兰贝斯议会倾向于在自治市镇内使用永久租赁,以促进建立稳定、有凝聚力和充满活力的社区。我们希望我们的居民及其家人感到安全,并与他们的社区建立长期联系。现在距离引入灵活租赁已有数年,没有证据表明它们有任何好处。它们很少被执行,甚至从未被执行过,并给租户带来不必要的担忧。我们很高兴看到许多注册供应商已经或正在考虑放弃使用灵活租赁。
Burnt Ranch 小学学区设有 5 个多年级教室,招收 90 名 TK-8 年级学生。我们的学区是一个偏远的农村单一学区,覆盖大片地理区域,为 Trinity 和 Humboldt 县的学生提供服务。我们近 60% 的学生是从周边地区转学过来的,最远来自 30 英里之外。我们约 15% 的学生是美洲原住民,共有 14 名学生,是一个重要的子群体。此外,我们约 70% 的学生经济条件较差,目前很少有学生无家可归,也没有寄养儿童。我们是一所 SWP Title I 学校。目前我们没有 ELL 学生,因此指标 2b、4e 和 4f 不适用。我们是一所小学 TK-8 学区,因此指标 4b、4c、4d、4g、4h、5c、5d 和 5e 不适用。每个学生都会接受广泛的学习课程(优先级 7A),其中包括 ELA、数学、社会研究、科学、体育、艺术、音乐以及 6-8 年级的大学/职业技术教育。所有学生都有足够的机会获得基于标准的课程和教学材料(优先级 1B)。所有教师都得到了适当的分配,并且都具有完全的资格(优先级 1A)。我们的校舍和校园于 2019 年重建,是新的,并且状况良好。我们的学校设施状况良好,FIT 评分(优先级 1C)就是明证。每年都会根据需要进行维修和保养。家长参与的机会包括参与 LCAP 咨询委员会、理事会、印度教育家长咨询委员会和 BR 家长教师组织 (PTO)。作为一个小型学区,我们每年都会对我们的学校进行全面的需求和预算分析评估。由于学生人数较少,需要分析的数据量较小,因此所有资源都平均分配给学区内的所有学生。我们将继续监控我们的资源,以确保所有学生的公平性。LCAP 将代替学生成就单一计划 (SPSA),并将包括之前在 SPSA 中的资金。此外,LCAP 教育合作伙伴 (PAC) 小组将代替学校理事会。Burnt Ranch 小学学区有一名特殊教育老师,负责为指定学生提供全周特殊教育支持。学生可以单独或以小组形式接受推入式和拉出式服务。我们聘请了一位特殊教育助理来支持语言和语言