米亚纳叶具有与抗生素相当的细菌抑制特性,可用于治疗虾中的颤动。然而,米亚纳叶中的生物活性化合物及其作为饲料中免疫刺激物的潜力,尤其是它们对总血细胞的影响和老虎大虾的吞噬活性,尚未得到充分探索。该实验以0、10、20和40G/ kg的浓度使用Miana叶提取物。生物活性化合物,并使用SPSS计划对总血细胞,吞噬活性进行统计分析和老虎虾存活。分析确定了MIANA叶提取物乙醇馏分中的100种化合物。其中,具有最高峰面积的三种化合物为:氨基甲酸,甲基酯(CAS甲基甲酯)为21.13%; 4(5H) - 噻唑龙,2-氨基 - (Cas pseudothiohydantoin)为16.16%;和环氧硅氧烷,己酰胺(CAS 1,1,3,3,5,5,5-己糖甲基 - 环己烷烷)为20.50%。实验结果表明,米亚纳叶提取物显着影响吞噬活性和存活,但不影响虎虾的总血细胞。在40g/ kg处理中观察到吞噬活性,存活和总血细胞的最高值,分别为76%,6.25 x 10^5 cfu/ ml和86.67%的值。总而言之,Miana叶提取物含有活跃的抗菌,抗病毒和抗炎化合物,并增强了总血细胞,吞噬活性和虎虾的存活率。
当今,发电厂工程师主要关注如何最大限度地提取燃料能量。这一目标涉及根据热力学第一定律和第二定律提高不同热力学要素和整个循环的效率。为实现这一目标,工程师们采用了各种旨在提高这些效率的技术。在目前的研究中,所使用的一种技术是用不同的工作流体替代水/蒸汽。通过改变工作流体,工程师们旨在优化发电厂的热力学性能。在本研究中,分析重点是氨水混合物与跨临界二氧化碳在热回收蒸汽发生器中的应用。研究结果表明,实现的最高功输出和第二定律效率分别为 1192 kJ/秒和 81.68%。当顶部循环压力设置为 50 bar,并且涡轮机入口温度分别为 500°C 和 300°C(氨水混合物和跨临界二氧化碳)时,可获得这些最佳值。此外,当顶循环压力设置为 50 bar、底循环压力设置为 160 bar 且涡轮机入口温度为 300°C 时,可观察到 43.57% 的最大第一定律效率。分析还表明,热源是造成大部分能量破坏的原因,在 500°C 的温度下,最多有 1970 kJ/秒的可用能量被破坏。为了实现热力学性能参数的最高值,建议在吸收器和冷凝器中保持低压。此外,分析表明,当冷凝器压力设置为 70 bar 时,发电成本达到峰值,达到 0.050 美元/千瓦时。
在欧盟排放交易体系 (EU-ETS) 中引入价格走廊。这并不意味着用税收取代市场,而是保持市场价格在最低值和最高值之间的变化,以减少波动性并改善对碳价的预测。在欧洲国家的能源税中纳入碳成分,以法国实施的模式为基础,2016 年气候能源贡献设定为 22 欧元/吨,2020 年价格轨迹为 56 欧元/吨,2030 年为 100 欧元/吨。这项措施对于鼓励运输和建筑行业的能源效率和可再生能源发展至关重要。努力在欧盟以外引入碳定价,并与所有选择这样做的国家合作。这并不意味着要实施单一的全球碳价或全球二氧化碳市场,而是要将所有致力于碳定价的国家和企业聚集在一起,分享共同原则。采取必要措施防止碳泄漏。碳价缺乏互惠性要求我们采取措施,保持欧洲能源密集型产业的竞争力,这些产业受到国际竞争的影响。为确保防止碳泄漏的努力有效,在修订欧盟排放交易体系指令时必须更新措施库。对燃煤电厂发电实行最低碳价,从而提高投资者的可见度,减少使用产生最高温室气体水平的发电系统。
混合纳米流体 (HNF) 和三重混合纳米流体 (THNF) 具有广泛的工业、工程和医学应用,因为它们可以提高传热速率。由于 THNF 的这些应用,在本问题中,分析了磁流体动力学 (MHD) 场中水基流体和铜、氧化铝和氧化钛纳米颗粒在指数拉伸表面上的 3D 流体动力学流动。在本研究中,提出了一种根据 THNF 的激发潜能使用 THNF 增强传热的新数学模型。该比较模型适用于在磁场存在下新模型的指数流。使用连续性、动量和能量方程推导出偏微分方程 (PDE)。使用 MATLAB 软件中的 𝑏𝑣𝑝−4𝑐 算法获得数值结果。主要结果表明,与混合材料相比,三元混合纳米材料的努塞尔特数(衡量热量传递速率的数值)更高。三元混合纳米流体的努塞尔特数值比混合纳米流体高 38.4%。三元混合纳米流体的努塞尔特数最高值为 1.5090,出现在帕朗特尔数 8.2 处。三元混合纳米流体的传热速率也优于混合纳米流体和传统纳米流体。A 和 β 的增加也会导致温度下降。此外,提高 Ha 和 β 的值会导致表面摩擦系数增加。此外,由于 𝛽、A、Pr 和 Bi 的增加,努塞尔特数 (Nu) 也会增加。比较图表可知,THNF(𝐶𝑢−𝐴𝑙 2 𝑂 3 −𝑇𝑖𝑂 2 /𝐻 2 𝑂)中的温度和 Nu 的增长率高于 NHF(𝐶𝑢−𝐴𝑙 2 𝑂 3 /𝐻 2 𝑂)中的温度和 Nu 的增长率。
寻找环境友好的产品以减少农作物对合成化肥的依赖提出了一个新的挑战。本研究旨在隔离和选择有效的天然PGPB,以减少对合成NPK肥料的依赖。从红树林(Avicennia Marina)的沉积物和根中分离出41种细菌,并在体外条件下评估其PGP特征。,只选择了两种兼容的杆菌菌株,以单独使用并混合使用以促进番茄幼苗的生长。在锅中以不同的合成NPK施肥率(0、50和100%NPK)评估了在土壤中应用的三种接种剂的效率。实验是在具有三个复制的完全随机设计中设置的。结果表明,几乎所有研究的参数显着增加了不同的接种剂。但是,它们的有效性与合成受精的应用率密切相关。应用细菌接种剂,仅50%NPK显着提高了植物高度(44-51%),数字生物量(60-86%),叶面积(77-87%),绿色平均水平(29-36%)(29-36%),归一化差异植被指数(29%),芽干重量(82-92--92--92-植物)和根干的重量(160)。关于光合活性,这种处理对叶绿素A(25-31%),叶绿素B(34-39%)和类胡萝卜素(45-49%)的浓度显示出积极影响。有趣的是,这些增加确保了与给定100%NPK的对照植物相似或更高的最高值。此外,在接种50%NPK的细菌混合物的植物中记录了番茄芽中N,P,K,Cu,Fe,Zn和Ca的最高积累。在第一次证明,天然PGP细菌衍生自红树林植物物种A.码头对番茄幼苗的质量产生了积极影响,同时降低了50%的NPK。
摘要 本研究调查了博尔诺州和卡诺州 5 岁以下儿童的营养状况。数据是通过人体测量参数寻找和获取的。在两个州的 4301 个家庭中,共评估了 4,680 名儿童。其中 49.9% 为男性,50.1% 为女性。分析的数据显示,严重急性营养不良率超过了令人震惊的国际标准率 5%;患病率从博尔诺州迈杜古里市政委员会的 9.6% 到卡诺州比奇地方政府的最高值 12.2% 不等。博尔诺州比乌地方政府的女性患病率为 15.3%,而卡诺州比奇地方政府的男性患病率最高,为 18.6%。研究还发现,恐怖主义有增无减,博科圣地的激烈叛乱活动是影响粮食短缺的主要挑战,其他因素包括无知和社会文化影响,这些都加剧了各阶层人口的营养不良,并同时对儿童产生影响。研究得出结论,迫切需要社会各阶层之间的协同作用,揭开极端宗教意识形态的神秘面纱并消除其极端性,紧急干预建立和实施社区治疗,以便在这些州乃至整个地区综合管理严重急性营养不良。关键词:5 岁以下儿童、营养状况、叛乱、中上臂围介绍当代干预措施和报告来自 Goon 等人(2011 年);联合国(2015 年);和世界卫生组织 (2018) 公布了 1990 年至 2017 年全球趋势,五岁以下儿童发育迟缓率为 253.4-150.8,消瘦率为 50.5,严重消瘦率为 16.4,超重率为 32-38.3。在选定的国家中,
摘要:识别精英和多样化的父母是释放新杂种的过程中的关键步骤。DNA指纹和种质的表征在植物育种中起着重要作用,在植物繁殖中,分子标记已被证明非常有效。当前的研究是在植物分子生物学和生物技术实验室,RMDCARS,Ambikapur(Chhattisgarh)进行的。共有27个SSR引物用于检查十八种新开发的近近近近使的多态性,其中8个被发现是多态性的,随后被用于DNA指纹和分子表征。使用这些多态性SSR引物,总共获得了25个等位基因,平均每个引物为3.13个等位基因。这些引物的PIC值范围为0.10至0.82,其中最高值为引物BNLG 1867。使用不同的带模式和等位基因尺寸的变化生成了每个近交的指纹(ID)。这些指纹数据为玉米的每种近交系列提供了不同的等位基因剖面。也使用具有算术平均值(UPGMA)的未加权对组方法为所有这些近交的树状图制备。它将它们分成五个主要簇,在近84%的遗传相似性中表明观察到的近交性近交中存在遗传变异。这使他们可以进一步利用在未来的繁殖计划中生成异性杂种。在所有研究的近交生中,IAMI-57和IAMI-43-1在遗传上都更加多样化。多态性SSR标记促进了基因型之间的歧视,并为改善这些基因组资源的未来使用提供了宝贵的信息。
摘要 烧结材料由于工艺简单而具有生产率优势,但由于强度不足而不适用于高负荷齿轮。为了提高烧结材料的疲劳强度,作者开发了无需二次加工即可实现高密度的液相烧结技术。在本研究中,评估了硼添加量(0-0.4 mass%)对 Fe-Ni-Mo-BC 烧结渗碳材料滚动接触疲劳强度的影响。此外,为了仅评估硼添加效果而不考虑密度的影响,控制每个试样的烧结密度相同。在本研究的测试范围内,硼添加量为 0.1 mass% 的材料滚动接触疲劳极限(p max )lim 表现出最高值,超过了 1700 MPa。该值不仅明显高于无硼材料的(p max )lim(1100 MPa),而且与锻钢的(p max )lim(1900 MPa)相比也是极高的值。从孔隙结构和材料结构两个角度研究了0.1B辊的(p max )lim明显较高的原因。孔隙结构方面,无硼辊的孔隙形状为不规则形状,而0.1B辊的孔隙形状为球形。通过对滚动接触疲劳试验中辊内部的正交剪切应力进行CAE分析的结果发现,0.1B辊孔隙周围的正交剪切应力的最大值比无硼辊低约35 %。该结果表明,0.1B辊比无硼辊更不容易出现裂纹。即,认为0.1B材料的孔隙形状对滚动接触疲劳强度的提高有影响。
5.1.5.3 长期极值................................................................................................................ 10 5.1.7 高相对湿度伴随低温............................................................................................... 11 5.1.7.1 最高记录................................................................................................................. 11 5.1.7.2 发生频率................................................................................................................. 11 5.1.7.3 长期极值............................................................................................................. 12 5.1.8 低相对湿度伴随高温................................................................................................. 12 5.1.8.1 最低记录................................................................................................................. 12 5.1.8.2 发生频率................................................................................................................. 12 5.1.8.3 长期极值............................................................................................................. 12 5.1.9 低相对湿度伴随低温................................................................................................. 12 5.1.10 风速............................................................................................................................. 12 5.1.10.1 最高记录................................................................................................................. 13 5.1.10.2 发生频率............................................................................................................... 13 5.1.10.3 长期极值............................................................................................................... 14 5.1.11 降雨率....................................................................................................................... 14 5.1.11.1 最高记录....................................................................................................................... 15 5.1.11.2 发生频率................................................................................................................. 15 5.1.11.3 长期极值................................................................................................................. 16 5.1.12 吹雪....................................................................................................................... 17 5.1.12.1 最高记录................................................................................................................. 17 5.1.12.2 发生频率................................................................................................................. 18 5.1.12.3长期极值................................................................................................................ 18 5.1.13 积雪.................................................................................................................... 18 5.1.13.1 最高记录............................................................................................................................... 19 5.1.13.2 发生频率 .............................................................................................................. 19 5.1.13.3 长期极值 .............................................................................................................. 19 5.1.14 冰积 .............................................................................................................................. 20 5.1.14.1 有记录以来的最高值 ...................................................................................................... 20 5.1.14.2 发生频率 ............................................................................................................. 20 5.1.14.3 长期极值 ............................................................................................................. 20 5.1.15 冰雹大小 ............................................................................................................................. 21 5.1.15.1 有记录以来的最大值 ................................................................................................ 21 5.1.15.2 发生频率 ............................................................................................................. 21 5.1.15.3 长期极值 ............................................................................................................. 21 5.1.16 高气压...................................................................................................................... 22 5.1.17 低气压...................................................................................................................... 22 5.1.17.1 最低记录................................................................................................................. 22 5.1.17.2 发生频率................................................................................................................. 22 5.1.17.3 长期极值................................................................................................................. 22 5.1.18 高大气密度............................................................................................................. 22 5.1.18.1 最高记录................................................................................................................. 22 5.1.18.2 发生频率................................................................................................................. 22 5.1.18.3 长期极值................................................................................................................. 22 5.1.19 低大气密度............................................................................................................. 23 5.1.19.1 最低记录................................................................................................................. 23记录................................................................................................................ 23 5.1.19.2 发生频率.................................................................................................... 23 5.1.19.3 长期极值...................................................................................................23 5.1.20 臭氧浓度...................................................................................................................... 23 5.1.20.1 最高记录............................................................................................................... 24 5.1.20.2 发生频率............................................................................................................... 24 5.1.20.3 长期极值............................................................................................................... 24
抽象的嫁接幼苗已成为世界许多地方的重要农业实践,用于生产和保护葫芦,免受生物和非生物胁迫的影响。盐度是埃及黄瓜的生长和生产力降低的主要非生物胁迫之一。This study aims to investigate the performance of commercial greenhouse cucumber hybrid (Hesham) grafted onto some genotypes and F1 hybrids rootstocks under salinity stress conditions (Salinity of the experimental soil and irrigation water were about 70.9 and 2.77 dS/m, respectively), at El-Anwar Farm, Cairo-Alexandria Desert Road, during summer seasons of 2020 and 2021under shade house 状况。此实验是在带有3个重复的随机完整块设计中进行的。与未移植对照相比,该实验包含14种处理,除7种F1杂交砧木外,还包括六种基因型rootstocks。结果表明,与未嫁接的植物相比,两个季节的植物高度,叶子面积,水果长度,果实长度,果实长度,果实长度,水果直径,产量和光合作用的植物高度,叶子面积,果实长度,果实长度和光合作用相比,与未枝的植物相比,植物的身高,果实重量,果实长度和光合作用可显着改善。 534556和siceraria pi 554556 x lagenaria siceraria pi 491365茎长度比第一个季节的非移植植物更大。在两个季节中嫁接到C. Maxima X C. Maxima X C. Maxima X C. Maxima X C. Moschata rootstock中,碳水化合物含量的最高值是在两个季节中估计的,而在两个季节中嫁接到Kalabsha rootstock上的黄瓜叶中估计了最高的脯氨酸含量。关键字:cucumis sativus,盐度压力,砧木,
